一切模型皆可联邦化:高斯朴素贝叶斯代码示例

史鼎
• 阅读 206

联邦学习是一种分布式的机器学习方法,其中多个客户端在一个中央服务器的协调下合作训练模型,但不共享他们的本地数据。一般情况下我们对联邦学习的理解都是大模型和深度学习模型才可以进行联邦学习,其实基本上只要包含参数的机器学习方法都可以使用联邦学习的方法保证数据隐私。

所以本文将以高斯朴素贝叶斯分类器为例创建一个联邦学习系统。我们将深入探讨联邦学习的数学原理,并将代码分解成易于理解的部分,配以丰富的代码片段和解释。

一切模型皆可联邦化:高斯朴素贝叶斯代码示例

高斯朴素贝叶斯简介

高斯朴素贝叶斯(GaussianNB)是一种分类算法,它假设特征遵循高斯分布。之所以称之为“朴素”,是因为它假设给定类标签的特征是独立的。使用贝叶斯定理计算样本属于某类的概率。

对于给定类别 y 的特征 Xi,高斯分布的概率密度函数是:

一切模型皆可联邦化:高斯朴素贝叶斯代码示例

其中 μy 和 σy^2 是类别 y 的特征的均值和方差。

后验概率 P(y∣X) 的计算公式为:

一切模型皆可联邦化:高斯朴素贝叶斯代码示例

其中 P(y) 是类别的先验概率。

联邦学习工作流程

  • 数据分配:将训练数据分配给多个客户端。
  • 本地训练:每个客户端训练一个本地高斯NB模型。
  • 参数聚合:服务器从客户端聚合模型参数。
  • 全局模型评估:服务器在测试数据上评估聚合模型。
    一切模型皆可联邦化:高斯朴素贝叶斯代码示例

可以看到这里最主要的部分就是参数聚合,也就是说,只要能够进行参数聚合操作,并且保证聚合的方法有效,那么模型就可以进行联邦学习。

代码示例

我们加载Iris数据集并将其分成训练集和测试集。

 importnumpyasnp
 fromsklearn.datasetsimportload_iris
 fromsklearn.model_selectionimporttrain_test_split
 fromsklearn.naive_bayesimportGaussianNB
 fromsklearn.metricsimportaccuracy_score, classification_report
 
 # Load the Iris dataset
 iris=load_iris()
 X=iris.data
 y=iris.target
 # Split the data into training and testing sets
 X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.3, random_state=42

将训练数据分成几个子集,每个子集代表一个客户端,在客户端之间分发数据。

 # Number of clients
 num_clients=5
 
 # Split the training data among the clients
 client_data=np.array_split(np.column_stack((X_train, y_train)), num_clients)

每个客户端训练一个本地的GaussianNB模型并返回它的参数。

 # Function to train a local model and return its parameters
 deftrain_local_model(data):
     X_local=data[:, :-1]
     y_local=data[:, -1]
     model=GaussianNB()
     model.fit(X_local, y_local)
     returnmodel.theta_, model.var_, model.class_prior_, model.class_count_
 
 # Train local models and collect their parameters
 local_params= [train_local_model(data) fordatainclient_data]

服务器端聚合本地模型的参数以形成全局模型。

 # Aggregate the local model parameters
 defaggregate_parameters(local_params):
     num_features=local_params[0][0].shape[1]
     num_classes=len(local_params[0][2])
     
     # Initialize global parameters
     global_theta=np.zeros((num_classes, num_features))
     global_sigma=np.zeros((num_classes, num_features))
     global_class_prior=np.zeros(num_classes)
     global_class_count=np.zeros(num_classes)
     
     # Sum the parameters from all clients
     fortheta, sigma, class_prior, class_countinlocal_params:
         global_theta+=theta*class_count[:, np.newaxis]
         global_sigma+=sigma*class_count[:, np.newaxis]
         global_class_prior+=class_prior*class_count
         global_class_count+=class_count
     
     # Normalize to get the means and variances
     global_theta/=global_class_count[:, np.newaxis]
     global_sigma/=global_class_count[:, np.newaxis]
     global_class_prior=global_class_count/global_class_count.sum()
     
     returnglobal_theta, global_sigma, global_class_prior
 
 # Aggregate the model parameters
 global_theta, global_sigma, global_class_prior=aggregate_parameters(local_params)

这里我们可以看到,因为模型只有 theta, sigma, class_prior, class_count这几个参数,并且我们对参数取了平均值(最简单的方法),然后进行了Normalize.

注意,在sklearn1.0以前版本使用的是sigma_参数,之后版本改名为var_ 所以如果代码报错,请检查slearn版本和官方文档,本文代码在sklearn1.5上运行通过

然后就可以用聚合后的参数创建一个全局的GaussianNB模型,并在测试数据上对其进行了评估。

 # Create a global model with aggregated parameters
 global_model=GaussianNB()
 global_model.theta_=global_theta
 global_model.var_=global_sigma
 global_model.class_prior_=global_class_prior
 global_model.classes_=np.arange(len(global_class_prior))
 
 # Evaluate the global model
 y_pred=global_model.predict(X_test)
 accuracy=accuracy_score(y_test, y_pred)
 report=classification_report(y_test, y_pred, target_names=iris.target_names)
 print("Accuracy:", accuracy)
 print("Classification Report:\n", report)

一切模型皆可联邦化:高斯朴素贝叶斯代码示例

可以看到,聚合模型是没有问题的。

总结

在本文中我们介绍了使用高斯Naïve贝叶斯创建一个联邦学习系统。包括了一些简单的GaussianNB的数学基础,在客户端之间分布训练数据,训练局部模型,汇总参数,最后评估全局模型。这种方法在利用分布式计算资源的同时保护了数据隐私。

联邦学习在不损害数据隐私的情况下为协作机器学习开辟了新的可能性。这里演示只是提供了一个基础,可以使用更高级的技术和隐私保护机制进行扩展。

https://avoid.overfit.cn/post/fcb204a39906412cbca818e9969e2deb

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
深度学习技术开发与应用
关键点1.强化学习的发展历程2.马尔可夫决策过程3.动态规划4.无模型预测学习5.无模型控制学习6.价值函数逼近7.策略梯度方法8.深度强化学习DQN算法系列9.深度策略梯度DDPG,PPO等第一天9:0012:0014:0017:00一、强化学习概述1.强化学习介绍2.强化学习与其它机器学习的不同3.强化学习发展历史4.强化学习典
联邦GNN综述与经典算法介绍
联邦学习和GNN都是当前AI领域的研究热点。联邦学习的多个参与方可以在不泄露原始数据的情况下,安全合规地联合训练业务模型,目前已在诸多领域取得了较好的结果。GNN在应对非欧数据结构时通常有较好的表现,因为它不仅考虑节点本身的特征还考虑节点之间的链接关系及强度,在诸如:异常个体识别、链接预测、分子性质预测、地理拓扑图预测交通拥堵等领域均有不俗表现。
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Wesley13 Wesley13
3年前
AI金融知识自学偏量化方向
前提:统计学习(统计分析)和机器学习之间的区别金融公司采用机器学习技术及招募相关人才要求第一个问题:  机器学习和统计学都是数据科学的一部分。机器学习中的学习一词表示算法依赖于一些数据(被用作训练集),来调整模型或算法的参数。这包含了许多的技术,比如回归、朴素贝叶斯或监督聚类。但不是所有的技术都适合机器学习。例如有一种统计和数
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Stella981 Stella981
3年前
Eclipse插件开发_学习_00_资源帖
一、官方资料 1.eclipseapi(https://www.oschina.net/action/GoToLink?urlhttp%3A%2F%2Fhelp.eclipse.org%2Fmars%2Findex.jsp%3Ftopic%3D%252Forg.eclipse.platform.doc.isv%252Fguide%2
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
美凌格栋栋酱 美凌格栋栋酱
5个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
史鼎
史鼎
Lv1
故乡归去千里,佳处辄迟留
文章
2
粉丝
0
获赞
0