数说:这只程序员组建的乐队为何能进HOT5?

Aidan075 等级 645 0 0
标签: httpspngPython

数说:这只程序员组建的乐队为何能进HOT5?

上周六晚,爱奇艺的独家综艺《乐队的夏天》总决赛终于落下了帷幕,虽然决赛过程有些“曲折”,但是我最喜欢的刺猬乐队,仍然凭借自己的硬实力,最终排在第二名!

值得一提的是,这只乐队的吉他手兼主唱也是一位程序员。

数说:这只程序员组建的乐队为何能进HOT5?

刺猬乐队其实成立10多年了,很有实力。

但是在老牌乐队云集的这次比赛中,第一次31进16时仅仅排在第12名,那么他又是如何逆风翻盘的?

让我来复盘一下。

获取数据

获取爱奇艺视频《乐队的夏天》各期节目的下面的评论。

数说:这只程序员组建的乐队为何能进HOT5?

F12,Network查看异步请求XHR,找到评论接口。

数说:这只程序员组建的乐队为何能进HOT5?

不要以为这里结束了,我们来看一下Request URL

https://sns-comment.iqiyi.com/v3/comment/get_comments.action?  
content_id=2537368600&types=time&last_id=213811925021  
&business_type=17&agent_type=119&agent_version=9.9.0&authcookie=

经过测试,大部分参数都是不变的,只有“content_id”和“last_id”,content_id对于每一期节目是固定的,我们可以自己手动获分析获得。那么last_id是怎么来的?

给大家放一下连续几页的 last_id 看一下吧。

213811925021  

213372828221  

212600215021  

211973666621

它们之间并没有什么累加的规律。

放弃的同学可以直接翻到上一张图,标黄的部分“213811925021”,正是我们看到的第一个 last_id 参数。

也就是说每个json里的最后一个 CommentId ,作为下一个url的 last_id 使用。

那么我们需要注意的就是在解析json的过程中需要返回最后一个 CommentId 。

def get_comments(url):  
    data = []  
    doc = get_json(url)  
    jobs=doc['data']['comments']  
    for job in jobs:  
        dic = {}  
        global CommentId  
        CommentId=jsonpath.jsonpath(job,'$..id')[0] #id  
        dic['id'] = CommentId  
        dic['content']=jsonpath.jsonpath(job,'$..content')[0] #评论  
        add_Time=jsonpath.jsonpath(job,'$..addTime')[0]  #时间  
        dic['addTime'] = stampToTime(add_Time)  #转化时间格式  
        dic['uid']=jsonpath.jsonpath(job['userInfo'],'$..uid')[0] #用户id  
        dic['uname']=jsonpath.jsonpath(job['userInfo'],'$..uname')[0] #用户名称  
        dic['gender']=jsonpath.jsonpath(job['userInfo'],'$..gender')[0] #性别  
        data.append(dic)  
    return data,CommentId #获得每个json里的最后一个CommentId 

剩下的循环爬取就好。

汇总后就获得了2.6万条评论数据。

数说:这只程序员组建的乐队为何能进HOT5?

数据分析

一个乐队名称在每期评论中的提及次数,可以侧面反映这只乐队在这期节目后受到观众喜欢的程度。

#乐队在评论中的提及数  
a = {'痛仰':'痛仰', '新裤子':'裤子','猴子军团':'猴子军团','鹿先森':'鹿先森','旺福':'旺福','九连真人':'九连','盘尼西林':'盘尼西林|青霉素',  
    '反光镜':'反光镜','click15':'click15|#15','海龟先生':'海龟先生','皇后皮箱':'皇后皮箱','面孔':'面孔','和平和浪':'和平和浪','MR.MISS':'MR.MISS|MISS',  
    'VOGUE5':'VOGUE5|VOGUE','薄荷绿':'薄荷绿','熊猫眼':'熊猫眼','果味VC':'果味VC','BONGBONG':'BONGBONG','醒山':'醒山','刺猬':'刺猬','旅行团':'旅行团',  
    '麋鹿王国':'麋鹿王国','宇宙人':'宇宙人','黑撒':'黑撒','南无':'南无','斯斯与帆':'斯斯与帆','葡萄不愤怒':'葡萄不愤怒','茶凉粉':'茶凉粉',  
    '青年小伙子':'青年小伙子','Mr.WooHoo':'Mr.WooHoo|WooHoo',}  
for key, value in a.items():  
    data1[key] = data1['content'].str.contains(value)  
staff_count = pd.Series({key: data1.loc[data1[key], 'content'].count() for key in a.keys()}).sort_values()  
print(staff_count)  

以第一期为例,结果如下。

数说:这只程序员组建的乐队为何能进HOT5?

每期节目的乐队排名都依次降序盘点汇总一下。

数说:这只程序员组建的乐队为何能进HOT5?

结果还蛮惊讶的。

除去第二期他们没有参加,也就是说从第三期开始,刺猬乐队便开始展现实力,几乎每一期都能让观众如此喜欢。

数说:这只程序员组建的乐队为何能进HOT5?

数据可视化

筛选出评论中提到刺猬乐队的评论数据。

data_ciwei= data[data['content'].str.contains('刺猬')]  

爬取得到的数据字段其实没几个。

简单看一下喜欢他们的观众的性别分布。

from pyecharts import Pie  
# 生成饼图  

gender_data = data_ciwei.groupby(['gender'])  
gender_cw = gender_data['gender'].agg(['count'])  
gender_cw.reset_index(inplace=True)  

attr = ['女', '男', '无']  
v1 = gender_cw['count']  
pie = Pie("评论提及刺猬乐队的用户性别分布", title_pos='center', title_top=0)  
pie.add("", attr, v1, radius=[40, 70], label_text_color=None, is_label_show=True, legend_orient="vertical", legend_pos="left", legend_top="%10")  
pie

使用pyecharts作图。

数说:这只程序员组建的乐队为何能进HOT5?

至于评论的长度之类的就不做分析了。

最后看一下词云,不用jieba分词试试。

from pyecharts import WordCloud  
# 生成词云  

bj_tag = []  
for st in data_ciwei.dropna(subset=['content'])['content']:  
    bj_tag.extend(st.split(' '))  

name, value = WordCloud.cast(Counter(bj_tag))  
wordcloud = WordCloud(width=1000, height=500)  
wordcloud.add("", name, value, word_size_range=[18, 250])  
wordcloud  

还是使用pyecharts作图。

数说:这只程序员组建的乐队为何能进HOT5?

可以看出观众对于刺猬乐队的要么是直接夸,要么是和其他强队做对比,总体都是希望它能越来越好。

刺猬总是强调摇滚乐是属于年轻人的,35岁之后可能就不那么摇滚了。

不过35岁之后,他们又将去向哪里呢?

也许等到中年的子健,面对着年轻的乐手们会说:

我不是针对谁,我是说在坐的各位,都没我代码写的好!

本文相关爬虫和数据分析代码:

#下载链接  
https://t.zsxq.com/yBAUNb2

本文转转自微信公众号凹凸数据原创https://mp.weixin.qq.com/s/SlBrGBJkDKMESCOI1C1zZA,可扫描二维码进行关注: 数说:这只程序员组建的乐队为何能进HOT5? 如有侵权,请联系删除。

收藏
评论区

相关推荐

原来Python绘图也可以这么漂亮,这次真的是学习到了!
(https://imghelloworld.osscnbeijing.aliyuncs.com/8830803f033eeed85783e9058cf08968.png) 作者:朱小五 来源:快学Python 👆人生苦短,快学Python! 最近看了一篇文章《一个牛逼的Python 可视化库:PyG2Plot》,可惜只是简单介
被“词云”包围的冰冰会更好看吗?安排
(https://imghelloworld.osscnbeijing.aliyuncs.com/b299933deefc692934e8cc6141ab3894.png) 大家好,我是小五🐶 昨天「凹凸数据」发了一篇张同学投稿的文章《用Python爬取王冰冰vlog弹幕并制作词云(https://mp.weixin.qq.com/
21天Python入门必备第一章
21天Python入门必备第一章 ================ <a name="FK7LH"></a> 课程介绍 ==== ![image.png](https://oscimg.oschina.net/oscnet/2cb9f9c4b989e8dc8f621dfe33e24aee167.png) ![image.png](https://os
64 岁 Python 之父退休失败,正式加入微软搞开源!
![](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2dpZi9wdHA4UDE4NHhqeWQ5YWZjN1h5V3cxTFUzNnRoQ3lOckg2eWJLWWNQRjZJNDdKTjJrMzRHRXh3VmdSMVdqeHFFS1A5cVpYRmYyTUJpYW
Django Drops
**1.Django Intro** ------------------ ![Django Archite](https://oscimg.oschina.net/oscnet/aa07f912f646b3bf567d5b9bba9398d1435.png) **2.Django Install** -------------------- ###
Python 3 教程
Python 3 教程 =========== ![python3](https://www.runoob.com/wp-content/uploads/2014/05/python3.png) Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,
Python 3.10 明年发布,这些新特性即将来袭!
点击“开发者技术前线”,选择“星标🔝” 在看|星标|留言,  真爱 ---------------------- ![](https://oscimg.oschina.net/oscnet/9ba3b15d-2f6c-4a16-9a9b-b877881ebbb7.png) 来源: 闻数起舞 我们目前生活在Python 3.8的稳定时代,
Python version 3.5 does not support variable...
背景 == 目前处于FastAPI学习初期,使用环境是: * Win7 64 bits SP1 * PyCharm 2016.3 * Python 3.8.4 * FastAPI 0.60.1 问题截图 ==== ![Python version 3.5 does not support variable...](https://s4
Python3 基本语法学习
1、查看Python版本及打印“Hellow World!”: ![](https://oscimg.oschina.net/oscnet/a61bad2f19989010fb3b0138321e93a4e49.png) 需要注意的是:在打印“Hello World”之前一定要先执行 python,否则会报无法 “无法初始化设备 PRN”,如图: ![
Python中文转换报错 'ascii' codec can't decode byte 0xe8 in position
 脚本报错: ![](https://oscimg.oschina.net/oscnet/5b8eaa4be291c9583f3fac05a59733caabf.png) 脚本代码: ![](https://oscimg.oschina.net/oscnet/3bbeff251f60674ece9d67de1e68463fbb1.png) 报错原因:
Python真是什么都能干!今天实现一下自动打开和运行电脑软件!
最近做项目,要用到软件自动化的操作,正好更大家分享一下! ![](https://img2018.cnblogs.com/blog/1627425/201909/1627425-20190911205328415-1196306902.png) 先看看Python操作: ============ ![都说了Python很牛逼!教大家用Pytho
Python脚本批量转换Webp为png或jpg
话说,Android开发的时,很多的应用已经将png或jpg改为了Webp格式,一个目的是为了减少包的体积,我觉得还有一个好处是资源包的安全考虑,不过我如果要反编译人家的apk,并拿到图片资源就比较恶心。这不,我今天想仿下网易严选,不过反编译后,发现图片都是webp格式的。心里想着,能不能使用Python编写一个一键转换工具呢? 答案是肯定的,由于Pyth
svg转png
svg转png网络上常用的方式有两种: 1.直接转base64放到图片src进行显示,测试效果不佳,始终报方法问题。 2.先转canvas,再转为png图,测试效果可以但svg透明背景到了canvas转换会变黑。 推荐使用方法三: 复制链接下载svg转png的js http://p8sv0x8g6.bkt.clouddn.com/saveSvgAs