计算机网络

BichonCode 等级 272 0 0

一、HTTP

1.1 请求和响应报文

计算机网络

  • 开始⾏,⽤于区分是请求报⽂还是响应报⽂。在请求报⽂中的开始⾏叫做请求⾏(Request-

Line),⽽在响应报⽂中的开始⾏叫做状态⾏(Status-Line)。在开始⾏的三个字段之间都以空格分 隔开,最后的“CR”和“LF”分别代表"回⻋""换⾏

  • ⾸部⾏,⽤来说明浏览器、服务器或报⽂主体的⼀些信息。⾸部可以有好⼏⾏,但也可以不使⽤。

在每⼀个⾸部⾏中都有⾸部字段名和它的值,每⼀⾏在结束的地⽅都要有"回⻋"和"换⾏”。整个⾸ 部⾏结束时,还有⼀空⾏将⾸部⾏和后⾯的实体主体分开。

  • 实体主体(entity body),在请求报⽂中⼀般都不⽤这个字段,⽽在响应报⽂中也可能没有这个字

段。

请求报文结构:

  • 第一行是包含了请求方法、URL、协议版本;
  • 接下来的多行都是请求首部 Header,每个首部都有一个首部名称,以及对应的值。
  • 一个空行用来分隔首部和内容主体 Body
  • 最后是请求的内容主体
GET http://www.example.com/ HTTP/1.1
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9
Accept-Encoding: gzip, deflate
Accept-Language: zh-CN,zh;q=0.9,en;q=0.8
Cache-Control: max-age=0
Host: www.example.com
If-Modified-Since: Thu, 17 Oct 2019 07:18:26 GMT
If-None-Match: "3147526947+gzip"
Proxy-Connection: keep-alive
Upgrade-Insecure-Requests: 1
User-Agent: Mozilla/5.0 xxx
param1=1&param2=2

响应报文结构:

  • 第一行包含协议版本、状态码以及描述,最常见的是 200 OK 表示请求成功了
  • 接下来多行也是首部内容
  • 一个空行分隔首部和内容主体
  • 最后是响应的内容主体
HTTP/1.1 200 OK
Age: 529651
Cache-Control: max-age=604800
Connection: keep-alive
Content-Encoding: gzip
Content-Length: 648
Content-Type: text/html; charset=UTF-8
Date: Mon, 02 Nov 2020 17:53:39 GMT
Etag: "3147526947+ident+gzip"
Expires: Mon, 09 Nov 2020 17:53:39 GMT
Keep-Alive: timeout=4
Last-Modified: Thu, 17 Oct 2019 07:18:26 GMT
Proxy-Connection: keep-alive
Server: ECS (sjc/16DF)
Vary: Accept-Encoding
X-Cache: HIT
<!doctype html>
<html>
<head>
    <title>Example Domain</title>
    // 省略... 
</body>
</html>

状态码都是三位数字:

  • 1xx 表示通知信息的,如请求收到了或正在进⾏处理。
  • 2xx 表示成功,如接受或知道了。
  • 3xx 表示重定向,表示要完成请求还必须采取进⼀步的⾏动。
  • 4xx 表示客户的差错,如请求中有错误的语法或不能完成。(401没有认证,403没有授权)
  • 5xx 表示服务器的差错,如服务器失效⽆法完成请求。

1.2 HTTP版本及其迭代

1.2.1 HTTP/1.1 新特性

  • 默认是长连接
  • 支持流水线
  • 支持同时打开多个 TCP 连接
  • 支持虚拟主机
  • 新增状态码 100
  • 支持分块传输编码
  • 新增缓存处理指令 max-age

1.2.2 HTTP/2.0

(1)HTTP/1.x 缺陷 HTTP/1.x 实现简单是以牺牲性能为代价的:

  • 客户端需要使用多个连接才能实现并发和缩短延迟;
  • 不会压缩请求和响应首部,从而导致不必要的网络流量;
  • 不支持有效的资源优先级,致使底层 TCP 连接的利用率低下。

(2)二进制分帧层 HTTP/2.0 将报文分成 HEADERS 帧和 DATA 帧,它们都是二进制格式的。 在通信过程中,只会有一个 TCP 连接存在,它承载了任意数量的双向数据流(Stream)。

  • 一个数据流(Stream)都有一个唯一标识符和可选的优先级信息,用于承载双向信息。
  • 消息(Message)是与逻辑请求或响应对应的完整的一系列帧。
  • 帧(Frame)是最小的通信单位,来自不同数据流的帧可以交错发送,然后再根据每个帧头的数据流标识符重新组装。

(3)服务端推送 HTTP/2.0 在客户端请求一个资源时,会把相关的资源一起发送给客户端,客户端就不需要再次发起请求了。例如客户端请求 page.html 页面,服务端就把 script.js 和 style.css 等与之相关的资源一起发给客户端。

(4)首部压缩 HTTP/1.1 的首部带有大量信息,而且每次都要重复发送。 HTTP/2.0 要求客户端和服务器同时维护和更新一个包含之前见过的首部字段表,从而避免了重复传输。 不仅如此,HTTP/2.0 也使用 Huffman 编码对首部字段进行压缩。

1.2.3 HTTP 1.0和HTTP 1.1的主要区别是什么?

这部分回答引用这篇文章 https://www.helloworld.net/redirect?target=https://mp.weixin.qq.com/s/GICbiyJpINrHZ41u_4zT-A?? 的一些内容。

HTTP1.0最早在网页中使用是在1996年,那个时候只是使用一些较为简单的网页上和网络请求上,而HTTP1.1则在1999年才开始广泛应用于现在的各大浏览器网络请求中,同时HTTP1.1也是当前使用最为广泛的HTTP协议。 主要区别主要体现在:

  1. 长连接 : 在HTTP/1.0中,默认使用的是短连接,也就是说每次请求都要重新建立一次连接。HTTP 是基于TCP/IP协议的,每一次建立或者断开连接都需要三次握手四次挥手的开销,如果每次请求都要这样的话,开销会比较大。因此最好能维持一个长连接,可以用个长连接来发多个请求。HTTP 1.1起,默认使用长连接 ,默认开启Connection: keep-alive。 HTTP/1.1的持续连接有非流水线方式和流水线方式 。流水线方式是客户在收到HTTP的响应报文之前就能接着发送新的请求报文。与之相对应的非流水线方式是客户在收到前一个响应后才能发送下一个请求。
  2. 错误状态响应码 :在HTTP1.1中新增了24个错误状态响应码,如409(Conflict)表示请求的资源与资源的当前状态发生冲突;410(Gone)表示服务器上的某个资源被永久性的删除。
  3. 缓存处理 :在HTTP1.0中主要使用header里的If-Modified-Since,Expires来做为缓存判断的标准,HTTP1.1则引入了更多的缓存控制策略例如Entity tag,If-Unmodified-Since, If-Match, If-None-Match等更多可供选择的缓存头来控制缓存策略。
  4. 带宽优化及网络连接的使用 :HTTP1.0中,存在一些浪费带宽的现象,例如客户端只是需要某个对象的一部分,而服务器却将整个对象送过来了,并且不支持断点续传功能,HTTP1.1则在请求头引入了range头域,它允许只请求资源的某个部分,即返回码是206(Partial Content),这样就方便了开发者自由的选择以便于充分利用带宽和连接。

1.3 HTTP长连接,短连接

  1. 在HTTP/1.0中默认使用短连接。也就是说,客户端和服务器每进行一次HTTP操作,就建立一次连接,任务结束就中断连接。当客户端浏览器访问的某个HTML或其他类型的Web页中包含有其他的Web资源(如JavaScript文件、图像文件、CSS文件等),每遇到这样一个Web资源,浏览器就会重新建立一个HTTP会话。

而从HTTP/1.1起,默认使用长连接,用以保持连接特性。使用长连接的HTTP协议,会在响应头加入这行代码:

Connection:keep-alive

在使用长连接的情况下,当一个网页打开完成后,客户端和服务器之间用于传输HTTP数据的TCP连接不会关闭,客户端再次访问这个服务器时,会继续使用这一条已经建立的连接。Keep-Alive不会永久保持连接,它有一个保持时间,可以在不同的服务器软件(如Apache)中设定这个时间。实现长连接需要客户端和服务端都支持长连接。 HTTP协议的长连接和短连接,实质上是TCP协议的长连接和短连接。

  1. HTTP协议的长连接和短连接,实质上是TCP协议的长连接和短连接。

—— 《HTTP长连接、短连接究竟是什么?》

  1. 之所以网络上说HTTP分为长连接和短连接,其实本质上是说的TCP连接。TCP连接是一个双向的通道,它是可以保持一段时间不关闭的,因此TCP连接才有真正的长连接和短连接这一说。

其实知道了以后,会觉得这很好理解。HTTP协议说到底是应用层的协议,而TCP才是真正的传输层协议,只有负责传输的这一层才需要建立连接。 一个形象的例子就是,拿你在网上购物来说,HTTP协议是指的那个快递单,你寄件的时候填的单子就像是发了一个HTTP请求,等货物运到地方了,快递员会根据你发的请求把货物送给相应的收货人。而TCP协议就是中间运货的那个大货车,也可能是火车或者飞机,但不管是什么,它是负责运输的,因此必须要有路,不管是地上还是天上。那么这个路就是所谓的TCP连接,也就是一个双向的数据通道。 因此,LZ现在甚至觉得,“HTTP连接”这个词就不应该出现,它只是一个应用层的协议,根本就没有所谓的连接这一说,就像FTP也是应用层的协议,但是你有听说过FTP连接吗?(恩,好像是听过,-_-,但你现在知道了,其实所谓的FTP连接,严格来说,依旧是TCP连接)

  1. HTTP协议与TCP/IP协议的关系

HTTP的长连接和短连接本质上是TCP长连接和短连接。HTTP属于应用层协议,在传输层使用TCP协议,在网络层使用IP协议。 IP协议主要解决网络路由和寻址问题,TCP协议主要解决如何在IP层之上可靠地传递数据包,使得网络上接收端收到发送端所发出的所有包,并且顺序与发送顺序一致。TCP协议是可靠的、面向连接的。

  1. 如何理解HTTP协议是无状态的

HTTP协议是无状态的,指的是协议对于事务处理没有记忆能力,服务器不知道客户端是什么状态。也就是说,打开一个服务器上的网页和上一次打开这个服务器上的网页之间没有任何联系。HTTP是一个无状态的面向连接的协议,无状态不代表HTTP不能保持TCP连接,更不能代表HTTP使用的是UDP协议(无连接)。

1.4 get和post什么区别

  • 参数上 :GET 的参数是以查询字符串出现在 URL 中,而 POST 的参数存储在实体主体中。
  • 幂等性:Get方法幂等;Post方法不幂等.
  • 安全性 :安全的 HTTP 方法不会改变服务器状态,也就是说它只是可读的。

GET 方法是安全的,而 POST 却不是

  • 缓存上:请求报文的 HTTP 方法本身是可缓存的,包括 GET 和 HEAD,但是 PUT 和 DELETE 不可缓存,POST 在多数情况下不可缓存的。
  • *XMLHttpRequest: *在使用 XMLHttpRequest 的 POST 方法时,浏览器会先发送 Header 再发送 Data。但并不是所有浏览器会这么做,例如火狐就不会。而 GET 方法 Header 和 Data 会一起发送
  • 本质区别

GET和POST本质上两者没有任何区别。他们都是HTTP协议中的请求方法。底层实现都是基于TCP/IP协议。但是由于HTTP的规定和浏览器/服务器的限制,导致他们在应用过程中体现出一些不同。 GET和POST是由HTTP协议定义的。在HTTP协议中,Method和Data(URL, Body, Header)是正交的两个概念,也就是说,使用哪个Method与应用层的数据如何传输是没有相互关系的。 HTTP没有要求,如果Method是POST数据就要放在BODY中。也没有要求,如果Method是GET,数据(参数)就一定要放在URL中而不能放在BODY中。 在postman中测试get请求,并且携带body,也是可以正常返回的。

1.5 三次握手和四次挥手

1.5.1 什么是三次握手?

先来了解一下TCP首部标志位。: tcp标志位或称位码,有6种标示:SYN(synchronous建立联机) ACK(acknowledgement 确认) PSH(push传送) FIN(finish结束) RST(reset重置) URG(urgent紧急)Sequence number(顺序号码) Acknowledge number(确认号码)

三次握手过程:最开始的时候客户端和服务器都是处于CLOSED状态。主动打开连接的为客户端,被动打开连接的是服务器。 计算机网络 (1)TCP服务器进程先创建传输控制块TCB,时刻准备接受客户进程的连接请求,此时服务器就进入了LISTEN(监听)状态; (2)TCP客户进程也是先创建传输控制块TCB,然后向服务器发出连接请求报文,这是报文首部中的同部位SYN=1,同时选择一个初始序列号 seq=x ,此时,TCP客户端进程进入了 SYN-SENT(同步已发送状态)状态。TCP规定,SYN报文段(SYN=1的报文段)不能携带数据,但需要消耗掉一个序号。 (3)TCP服务器收到请求报文后,如果同意连接,则发出确认报文。确认报文中应该 ACK=1,SYN=1,确认号是ack=x+1,同时也要为自己初始化一个序列号 seq=y,此时,TCP服务器进程进入了SYN-RCVD(同步收到)状态。这个报文也不能携带数据,但是同样要消耗一个序号。 (4)TCP客户进程收到确认后,还要向服务器给出确认。确认报文的ACK=1,ack=y+1,自己的序列号seq=x+1,此时,TCP连接建立,客户端进入ESTABLISHED(已建立连接)状态。TCP规定,ACK报文段可以携带数据,但是如果不携带数据则不消耗序号。 (5)当服务器收到客户端的确认后也进入ESTABLISHED状态,此后双方就可以开始通信了。

1.5.2 为什么要采用三次握手,两次不可以吗?

  • 三次握手最主要的目的就是客户端和服务器都要确认自己的发送与接收是正常的。
  • 防止已经失效的连接请求报文突然又传送到了服务器,从而产生错误。

如果使用的是两次握手建立连接,假设有这样一种场景,客户端发送了第一个请求连接并且没有丢失,只是因为在网络结点中滞留的时间太长了,由于TCP的客户端迟迟没有收到确认报文,以为服务器没有收到,此时重新向服务器发送这条报文,此后客户端和服务器经过两次握手完成连接,传输数据,然后关闭连接。此时此前滞留的那一次请求连接,网络通畅了到达了服务器,这个报文本该是失效的,但是,两次握手的机制将会让客户端和服务器再次建立连接,这将导致不必要的错误和资源的浪费。 如果采用的是三次握手,就算是那一次失效的报文传送过来了,服务端接受到了那条失效报文并且回复了确认报文,但是客户端不会再次发出确认。由于服务器收不到确认,就知道客户端并没有请求连接。

1.5.3 第2次握手传回了ACK,为什么还要传回SYN?

  • 接收端传回发送端所发送的ACK是为了告诉客户端,我接收到的信息确实就是你所发送的信号了,这表明从客户端到服务端的通信是正常的。而回传SYN则是为了建立并确认从服务端到客户端的通信。

1.5.4 为什么双方断开连接需要四次挥手?

计算机网络

  • 客户端-发送一个 FIN,用来关闭客户端到服务器的数据传送
  • 服务器-收到这个 FIN,它发回一 个 ACK,确认序号为收到的序号加1 。和 SYN 一样,一个 FIN 将占用一个序号
  • 服务器-关闭与客户端的连接,发送一个FIN给客户端
  • 客户端-发回 ACK 报文确认,并将确认序号设置为收到序号加1

任何一方都可以在数据传送结束后发出连接释放的通知,待对方确认后进入半关闭状态。当另一方也没有数据再发送的时候,则发出连接释放通知,对方确认后就完全关闭了TCP连接。

详细过程(参考自https://www.helloworld.net/redirect?target=https://blog.csdn.net/qzcsu/article/details/72861891): (1)客户端进程发出连接释放报文,并且停止发送数据。释放数据报文首部,FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态。 TCP规定,FIN报文段即使不携带数据,也要消耗一个序号。 (2)服务器收到连接释放报文,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT(关闭等待)状态。TCP服务器通知高层的应用进程,客户端向服务器的方向就释放了,这时候处于半关闭状态,即客户端已经没有数据要发送了,但是服务器若发送数据,客户端依然要接受。这个状态还要持续一段时间,也就是整个CLOSE-WAIT状态持续的时间。 (3)客户端收到服务器的确认请求后,此时,客户端就进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文(在这之前还需要接受服务器发送的最后的数据)。 (4)服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,FIN=1,ack=u+1,由于在半关闭状态,服务器很可能又发送了一些数据,假定此时的序列号为seq=w,此时,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。 (5)客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态。注意此时TCP连接还没有释放,必须经过2∗ *∗MSL(最长报文段寿命)的时间后,当客户端撤销相应的TCB后,才进入CLOSED状态。 (6)服务器只要收到了客户端发出的确认,立即进入CLOSED状态。同样,撤销TCB后,就结束了这次的TCP连接。可以看到,服务器结束TCP连接的时间要比客户端早一些。

1.5.5为什么客户端最后还要等待2MSL?

MSL(Maximum Segment Lifetime),TCP允许不同的实现可以设置不同的MSL值。 第一,保证客户端发送的最后一个ACK报文能够到达服务器,因为这个ACK报文可能丢失,站在服务器的角度看来,我已经发送了FIN+ACK报文请求断开了,客户端还没有给我回应,应该是我发送的请求断开报文它没有收到,于是服务器又会重新发送一次,而客户端就能在这个2MSL时间段内收到这个重传的报文,接着给出回应报文,并且会重启2MSL计时器。 第二,防止类似与“三次握手”中提到了的“已经失效的连接请求报文段”出现在本连接中。客户端发送完最后一个确认报文后,在这个2MSL时间中,就可以使本连接持续的时间内所产生的所有报文段都从网络中消失。这样新的连接中不会出现旧连接的请求报文。

1.5.6为什么建立连接是三次握手,关闭连接确是四次挥手呢?

建立连接的时候, 服务器在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。 而关闭连接时,服务器收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,而自己也未必全部数据都发送给对方了,所以己方可以立即关闭,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送,从而导致多了一次。

1.5.7 如果已经建立了连接,但是客户端突然出现故障了怎么办?

  • TCP还设有一个保活计时器,显然,客户端如果出现故障,服务器不能一直等下去,白白浪费资源。服务器每收到一次客户端的请求后都会重新复位这个计时器,时间通常是设置为2小时,若两小时还没有收到客户端的任何数据,服务器就会发送一个探测报文段,以后每隔75秒发送一次。若一连发送10个探测报文仍然没反应,服务器就认为客户端出了故障,接着就关闭连接。

1.6 TCP,UDP 协议的区别

计算机网络-

  • UDP 在传送数据之前不需要先建立连接,远地主机在收到 UDP 报文后,不需要给出任何确认。虽然 UDP 不提供可靠交付,但在某些情况下 UDP 确是一种最有效的工作方式(一般用于即时通信),比如: QQ 语音、 QQ 视频 、直播等等
  • TCP 提供面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。 TCP 不提供广播或多播服务。由于 TCP 要提供可靠的,面向连接的传输服务(TCP的可靠体现在TCP在传递数据之前,会有三次握手来建立连接,而且在数据传递时,有确认、窗口、重传、拥塞控制机制,在数据传完后,还会断开连接用来节约系统资源),这一难以避免增加了许多开销,如确认,流量控制,计时器以及连接管理等。这不仅使协议数据单元的首部增大很多,还要占用许多处理机资源。TCP 一般用于文件传输、发送和接收邮件、远程登录等场景。

1.7 TCP 协议如何保证可靠传输 ?

1.7.1 主要有八个方面:

  • 应用数据被分割成 TCP 认为最适合发送的数据块。
  • TCP 给发送的每一个包进行编号,接收方对数据包进行排序,把有序数据传送给应用层。
  • 校验和: TCP 将保持它首部和数据的检验和。这是一个端到端的检验和,目的是检测数据在传输过程中的任何变化。如果收到段的检验和有差错,TCP 将丢弃这个报文段和不确认收到此报文段。
  • TCP 的接收端会丢弃重复的数据。
  • 流量控制: TCP 连接的每一方都有固定大小的缓冲空间,TCP的接收端只允许发送端发送接收端缓冲区能接纳的数据。当接收方来不及处理发送方的数据,能提示发送方降低发送的速率,防止包丢失。TCP 使用的流量控制协议是可变大小的滑动窗口协议。 (TCP 利用滑动窗口实现流量控制)
  • 拥塞控制: 当网络拥塞时,减少数据的发送。
  • ARQ协议: 也是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认。在收到确认后再发下一个分组。
  • 超时重传: 当 TCP 发出一个段后,它启动一个定时器,等待目的端确认收到这个报文段。如果不能及时收到一个确认,将重发这个报文段。

1.7.2 ARQ协议

  • 自动重传请求(Automatic Repeat-reQuest,ARQ)是OSI模型中数据链路层和传输层的错误纠正协议之一。它通过使用确认和超时这两个机制,在不可靠服务的基础上实现可靠的信息传输。如果发送方在发送后一段时间之内没有收到确认帧,它通常会重新发送。ARQ包括停止等待ARQ协议和连续ARQ协议。- 停止等待ARQ协议
  • 停止等待协议是为了实现可靠传输的,它的基本原理就是每发完一个分组就停止发送,等待对方确认(回复ACK)。如果过了一段时间(超时时间后),还是没有收到 ACK 确认,说明没有发送成功,需要重新发送,直到收到确认后再发下一个分组;
  • 在停止等待协议中,若接收方收到重复分组,就丢弃该分组,但同时还要发送确认;

优点: 简单 缺点: 信道利用率低,等待时间长 1) 无差错情况: 发送方发送分组,接收方在规定时间内收到,并且回复确认.发送方再次发送。 2) 出现差错情况(超时重传): 停止等待协议中超时重传是指只要超过一段时间仍然没有收到确认,就重传前面发送过的分组(认为刚才发送过的分组丢失了)。因此每发送完一个分组需要设置一个超时计时器,其重传时间应比数据在分组传输的平均往返时间更长一些。这种自动重传方式常称为 自动重传请求 ARQ 。另外在停止等待协议中若收到重复分组,就丢弃该分组,但同时还要发送确认。连续 ARQ 协议 可提高信道利用率。发送维持一个发送窗口,凡位于发送窗口内的分组可连续发送出去,而不需要等待对方确认。接收方一般采用累积确认,对按序到达的最后一个分组发送确认,表明到这个分组位置的所有分组都已经正确收到了。 3) 确认丢失和确认迟到

  • 确认丢失 :确认消息在传输过程丢失。当A发送M1消息,B收到后,B向A发送了一个M1确认消息,但却在传输过程中丢失。而A并不知道,在超时计时过后,A重传M1消息,B再次收到该消息后采取以下两点措施:1. 丢弃这个重复的M1消息,不向上层交付。 2. 向A发送确认消息。(不会认为已经发送过了,就不再发送。A能重传,就证明B的确认消息丢失)。

  • 确认迟到 :确认消息在传输过程中迟到。A发送M1消息,B收到并发送确认。在超时时间内没有收到确认消息,A重传M1消息,B仍然收到并继续发送确认消息(B收到了2份M1)。此时A收到了B第二次发送的确认消息。接着发送其他数据。过了一会,A收到了B第一次发送的对M1的确认消息(A也收到了2份确认消息)。处理如下:1. A收到重复的确认后,直接丢弃。

       2. B收到重复的M1后,也直接丢弃重复的M1。

1.7.3 连续ARQ协议

连续 ARQ 协议可提高信道利用率。发送方维持一个发送窗口,凡位于发送窗口内的分组可以连续发送出去,而不需要等待对方确认。接收方一般采用累计确认,对按序到达的最后一个分组发送确认,表明到这个分组为止的所有分组都已经正确收到了。 优点: 信道利用率高,容易实现,即使确认丢失,也不必重传。 缺点: 不能向发送方反映出接收方已经正确收到的所有分组的信息。 比如:发送方发送了 5条 消息,中间第三条丢失(3号),这时接收方只能对前两个发送确认。发送方无法知道后三个分组的下落,而只好把后三个全部重传一次。这也叫 Go-Back-N(回退 N),表示需要退回来重传已经发送过的 N 个消息。

1.7.4 滑动窗口和流量控制

  • TCP 利用滑动窗口实现流量控制。流量控制是为了控制发送方发送速率,保证接收方来得及接收。 接收方发送的确认报文中的窗口字段可以用来控制发送方窗口大小,从而影响发送方的发送速率。将窗口字段设置为 0,则发送方不能发送数据。

1.7.5 拥塞控制

  • 在某段时间,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就要变坏。这种情况就叫拥塞。拥塞控制就是为了防止过多的数据注入到网络中,这样就可以使网络中的路由器或链路不致过载。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。拥塞控制是一个全局性的过程,涉及到所有的主机,所有的路由器,以及与降低网络传输性能有关的所有因素。相反,流量控制往往是点对点通信量的控制,是个端到端的问题。流量控制所要做到的就是抑制发送端发送数据的速率,以便使接收端来得及接收。
  • 为了进行拥塞控制,TCP 发送方要维持一个 拥塞窗口(cwnd) 的状态变量。拥塞控制窗口的大小取决于网络的拥塞程度,并且动态变化。发送方让自己的发送窗口取为拥塞窗口和接收方的接受窗口中较小的一个。
  • TCP的拥塞控制采用了四种算法,即 慢开始拥塞避免快重传快恢复。在网络层也可以使路由器采用适当的分组丢弃策略(如主动队列管理 AQM),以减少网络拥塞的发生。

(1)慢开始: 慢开始算法的思路是当主机开始发送数据时,如果立即把大量数据字节注入到网络,那么可能会引起网络阻塞,因为现在还不知道网络的符合情况。经验表明,较好的方法是先探测一下,即由小到大逐渐增大发送窗口,也就是由小到大逐渐增大拥塞窗口数值。cwnd初始值为1,每经过一个传播轮次,cwnd加倍。 (2)拥塞避免: 拥塞避免算法的思路是让拥塞窗口cwnd缓慢增大,即每经过一个往返时间RTT就把发送放的cwnd加1. (3)快重传与快恢复: 在 TCP/IP 中,快速重传和恢复(fast retransmit and recovery,FRR)是一种拥塞控制算法,它能快速恢复丢失的数据包。没有 FRR,如果数据包丢失了,TCP 将会使用定时器来要求传输暂停。在暂停的这段时间内,没有新的或复制的数据包被发送。有了 FRR,如果接收机接收到一个不按顺序的数据段,它会立即给发送机发送一个重复确认。如果发送机接收到三个重复确认,它会假定确认件指出的数据段丢失了,并立即重传这些丢失的数据段。有了 FRR,就不会因为重传时要求的暂停被耽误。  当有单独的数据包丢失时,快速重传和恢复(FRR)能最有效地工作。当有多个数据信息包在某一段很短的时间内丢失时,它则不能很有效地工作。

1.8 在浏览器中输入url地址 ->> 显示主页的过程。

  1. DNS解析
  2. TCP连接
  3. 发送HTTP请求
  4. 服务器处理请求并返回HTTP报文
  5. 浏览器解析渲染页面
  6. 连接结束

具体可以参考下面这篇文章:

二、网络分层

2.1 常见的网络分层

  1. OSI参考模型: (7层):物理层、数据链路层、网络层、传输层、会话层、表示层、应用层。
  2. TCP/IP分层(4层):网络接口层、 网际层、运输层、 应用层。
  3. 五层协议(5层):物理层、数据链路层、网络层、运输层、 应用层。

计算机网络 ** 每一层的协议如下: **

  • 物理层:RJ45、CLOCK、IEEE802.3 (中继器,集线器)
  • 数据链路:PPP、FR、HDLC、VLAN、MAC (网桥,交换机)
  • 网络层:IP、ICMP、ARP、RARP、OSPF、IPX、RIP、IGRP、 (路由器)
  • 传输层:TCP、UDP、SPX
  • 会话层:NFS、SQL、NETBIOS、RPC
  • 表示层:JPEG、MPEG、ASII
  • 应用层:FTP、DNS、Telnet、SMTP、HTTP、WWW、NFS

** 每一层的作用: **

  1. 物理层:定义传输媒体的接口有关的一些特性,利用传输介质为数据链路层提供物理连接。考虑的是怎样才能在连接各种计算机的传输媒体上传输数据比特流,如何实现比特传输的细节,而不是指具体传输媒体,作用是尽可能地屏蔽掉传输媒体和通信手段的差异,使得数据链路层感觉不到这些差异,可以专心完成本层的协议和服务。

  2. 数据链路层:将比特组装成帧和点到点的传递(帧Frame),不考虑物理层如何实现比特传输的细节,我们就可以简单的认为数据帧通过数据链路由节点A发送到节点B。

    数据链路层三个基本问题:

  • 封装成帧
  • 透明传输
  • 差错检验

计算机网络

  1. 网络层:负责数据包从源到宿的传递和网际互连(包PackeT)
  2. 传输层:提供端到端的可靠报文传递和错误恢复(段Segment)
  3. 会话层:建立、管理和终止会话(会话协议数据单元SPDU)
  4. 表示层:对数据进行翻译、加密和压缩(表示协议数据单元PPDU)
  5. 应用层:允许访问OSI环境的手段(应用协议数据单元APDU)
收藏
评论区
守株待兔
最新文章
数据库系统概论 2021-01-23 11:49
List集合 2021-01-23 11:47
ConcurrentHashMap 2021-01-23 11:46
Java的其他Map 2021-01-23 11:43
双指针问题 2021-01-23 11:40
软件工程 2021-01-23 11:38
大数据排序 2021-01-23 11:37
操作系统 2021-01-23 11:29

导读