高质量的缺陷分析:让自己少写 bug

大荣
• 阅读 1733

简介: 缺陷分析做得好,bug 写得少。阿里资深技术专家和你分享如何进行高质量的缺陷分析,总结了 5 个要点,通过缺陷分析消除开发中的各种盲点,打造一个学习型的团队。

高质量的缺陷分析:让自己少写 bug

软件开发中的缺陷隐含着极高的价值,但是许多组织都仅仅忍受了缺陷带来的成本和后果,却让价值白白溜掉了。

缺陷的价值是其触发的学习和成长的机会。把握缺陷带来的学习机会,可以快速提高组织的能力,未来的缺陷更少,成本更低,更容易成功。但同时,有效的缺陷分析和跟踪行动需要有效的方法和相应的组织的支持。

缺陷隐含着极高的价值

最近我们做了一次关于缺陷分析的工作坊。

“发生缺陷是一件好事吗?” 在工作坊开始的时候,我这么问参与的同学。
“那当然是一件坏事了。”

“不管是不是好事,它就在那儿。我觉得无所谓好不好,这是一件正常的事情。”
“这么说好像也对,但是缺陷很麻烦,我没法喜欢缺陷。”

是的,没有人喜欢缺陷,它消耗研发成本,影响开发周期,但同时,缺陷又和软件开发如影随形,无论多少,始终都在。这是为什么呢?

看下面的这张图:

高质量的缺陷分析:让自己少写 bug

软件开发和工业生产完全不同。工业生产通过消除过程中的各种可变性,能够逐步逼近零缺陷的目标。所以,六西格玛方法在工业生产中非常行之有效。

软件开发的过程则恰恰相反。每一次开发,都是不确定的,我们往往都是在项目临近结束的时候,对整个项目的各种问题和细节才变得清晰。在这种假设下,与其追求零缺陷,倒不如说是我们应该追求降低缺陷的影响,比如,在缺陷产生的第一时间(注入时间甚至注入之前)就发现缺陷——因为这时候缺陷的成本几乎为零,这也就可以等价为“零缺陷”了吧。

如果说工业生产中的六西格玛方法来自于对生产系统的打造,那么,在软件开发中,“零缺陷”对应的系统是什么呢?它当然包含软件研发的流程和工具,但是,在我看来,最重要的,应该是打造软件的核心主体——人。通过缺陷分析来持续学习,才能不浪费缺陷所消耗的成本。

为什么会重复踩坑

有不少团队是有缺陷原因分析的。我曾经仔细分析过一个团队的缺陷原因分析,发现了下面这些缺陷原因的高频词:

  • 编码有问题,下次写代码的时候想的更仔细一些。
  • 代码评审做的不好。下次代码评审要充分。
  • 业务场景分析不全面,下次分析的更全面一些。
  • ......

我相信,写下上述原因分析的同学,内心一定是很真诚的,也是真心觉得自己当时代码写的不够好,业务场景分析的不全面,代码评审不够充分。但是,这个分析带来的行动,却往往是不可达成的。是真的想的不仔细吗,还是就是想不到?这次评审做的不好,下次就肯定能做好了吗?这次场景分析不全,那么怎么才能更全呢?

这种原因分析过于宽泛了,以至于很难产生实际有效的改进行动,下次往往还是会在同样的地方跌倒——大家只要看一下在既往的原因分析中,有多少次类似的答案?每一次重复,就是一次新的踩坑。

还有一类原因分析,恰恰相反,又过于具体化了,具体化到了没有学习价值的层面上。例如,这是当时设计的不对,A 服务就不该调用 B 服务,A 服务应该考虑到B服务调用中的异常场景,等等。好吧,缺陷现在已经修复了,A 服务调用 B 服务出现的异常场景已经固化在代码中了,下一次如果是 C 服务调用 D 服务的异常场景应该怎么办呢?

最合适的缺陷原因应该基于这样的标准:这些原因需要形成系统化的可行动的结果。这个标准的检验方式是:下一次如果发生某某场景,我们的应对方案是否有效?

做好缺陷分析的 5 个要点

在实践中,我们总结了 5 个要点,来最大化出于学习目的的缺陷分析的实践操作。它们是:

  • 及时总结,设置卡点
  • 结对分析,小组总结
  • 负面清单支持下的全量分析
  • 可操作的结果
  • 团体学习,机制建设

及时总结,设置卡点

“缺陷分析很重要,但是研发同学都太忙了,我们两个月集中做一次怎么样?”

别那么紧张——及时才是最节约的方式。要从忙碌中解放出来,每次花 15 分钟,做一次有效的缺陷分析,时间已经妥妥的啦。

缺陷分析的最好时间是缺陷修复完成的时间。此时记忆最新鲜、也能早收益。如果一个缺陷已经过去了两个月,那么缺陷分析的成本就变高了,得找回原来的记忆和当时的上下文,这个记忆准确不准确还是另一回事。

怎样才能保证及时地做,从而保证这些重要而不紧急的事情发生呢?一个比较有效的方式,是设置流程中的卡点:当缺陷被设定为已修复状态、或者设定为已关闭状态时,强制把缺陷分析设定为一个流程卡点,这样就能形成比较好的驱动。

结对分析,小组总结

谁来负责缺陷分析?是让具体这个缺陷的同学来做,还是召集整个团队一起?

召集整个团队来做缺陷分析,有时候代价过于高昂。即使仅仅分析比较后期的线上问题,即使每个缺陷仅仅分析 15 分钟:100 个缺陷,每个团队 8 个人,乘积就是 12,000分钟,合 200 个小时,也是一个惊人的数字,投入产出不成比例。

解决缺陷的同学确实是对这个缺陷理解最好。但是,这会不会形成“单点问题”,降低问题分析的有效性?

我们的方案是:

把结对分析作为制度

让解决缺陷的同学担任负责人,搭配上一个小伙伴。结对既形成了知识方面的互补,一定程度上消除了思维盲点,也通过结对形成了更深入的讨论,也提前进行结果的“验收”,提高分析的质量。如果有必要,结对的小组可以自主决定是否引入其他人参与。

团队定期讨论学习

团队定期对重要的缺陷分析结果进行讨论,既是对小组成果的验收,更有利于在团队成员间形成传播,互相学习。

负面清单支持下的全量分析

缺陷分析的目的是提升,所以,重在解决那些“未知的未知”的问题。显然不是每个缺陷都应该深入分析。但是,如果我们针对每个缺陷都定义它该不该分析,又会导致决策成本过高,而且质量也不可靠。所以,我们的做法是在默认全量的基础上,使用负面清单进行过滤。凡是负面清单不存在的,都进行缺陷分析。负面清单是团队级别的。每个团队都应该维护自己的列表,例如:

  • 偶发问题
  • 已经列在改进项中的问题(不断扩充)

这个事情和淘金有些类似,明确不要什么,能更高效地避免那些真正值得做的事情不被淹没。事实上,每次缺陷分析都会扩充负面清单的长度,所需的缺陷分析数量将越来越少,问题越来越聚焦,时间也越来越节省。

可操作的结果

缺陷分析应该产生有价值的洞见,足够的深度是重点。在如何产生深度洞见方面已经有非常多成熟的方法,最典型的是 5 Whys,此外还有鱼骨图等著名工具可用。为了控制篇幅,本文略去对这些方法的介绍,只通过一个实例来说明在实际的缺陷分析中,我们是如何产生深度洞见的。

某缺陷描述了如下的场景(该实例在不影响问题说明的情况下做了适度抽象):

用户持有某个虚拟设备,该设备有一些附属资源,当用户删除设备时,该设备的附属资源应该被释放。但是,发现在一种特殊场景下,这个附属资源并没有得到释放。

代码如下:

void releaseResources (resoure_id){    
    if (failedOfHardwareResourceRelease(resource_id)){        
        writeLog("resource release failed");    
    }
}

下面是关于这个问题的对话:

“原因是什么?”

“我们没有在需求分析阶段考虑到这种释放不成功的场景。”

“OK。需求分析是问题,这是一个改进点。——但是更重要的:最后发现这个问题的最直接的机会点是哪个时间点?”

“写代码的时候。”

“写代码的时候我们注意到这个问题了吗?”

“注意到了啊,所以写了 log,但是没仔细想应该怎么处理。这说明我们对这段代码的职责定义不清晰。”

“也许我们可以在编程规范中加入一条:出现异常场景时不应该只记录 log,而应该和负责人澄清场景和处理方案。在未来,当出现了仅仅出现写错误 log,但是没有其他处理的时候,我们就能注意到这一点。”

检验分析深度是否足够,最直接的指标就是产生的结果是否是“可行动的”。如果一个结果是不可行动的,往往意味着深度或者抽象不够。

团体学习,机制建设

学习型组织并不总是容易建立。除了上述心智模型和操作方法之外,组织机制往往是成功的重点。我们总结了如下几点:

  • 是长期存在的团队
  • 建立持续学习的心智模型
  • 持续维护和利用本组织的智力资产

这几点似乎都毋需多言。但是关于智力资产,还是要多强调一下:分析结果最后可能会是流程改进、编程习惯和编程规范、代码评审的检查单、设计能力的提升、引入某些新的工程实践如实例化需求等,不外乎有两类:

短期的行动

例如引入实例化需求实践、 建设自动化测试机制等。对于这类具体行动,要定义责任人和结束日期,并且把它们和管理需求等工作项同等管理起来,确保其发生。

长期的规则
这类是需要持续关注的东西,例如代码评审的常见问题列表、采纳某种设计思想如契约式设计、防御式编程等。对于这类问题,由于需要持续关注,需要维护它们,并把它们作为团队资产的一部分。当然了,如果技术上可行,还是要把其中的一部分尽早做成工具,减少记忆负担,提升可操作性。

这种资产维护的越多,就会发现未来需要继续分析的缺陷越少——当然了,这也是一切资产的共性所在。

总结

现实情况纷繁复杂,统一的方法往往并不存在。但是心智模型和一定的规律、思路还是存在的。本文聚焦于通过缺陷分析进行学习。

通过适当的方法,它可以在可控的时间投入下,为组织积累宝贵的财富,并且在未来的开发中得到数倍、数十倍上百倍的回报。忙碌不是理由,在未来少掉一个新 bug,就赚回来了。

通过缺陷分析,我们可以形成如下的产出:

  • 建立团队关于需求分析、软件设计、编程、测试、运维等方面的共同心智
  • 形成常见问题的检查单
  • 采用或者开发新的工具
  • 改进既有流程
  • 形成针对特定问题的行动计划

最最重要的,通过消除各种盲点,我们的能力也就越来越强,开发也就越来越顺畅,距离零缺陷的目标,就越来越近了。

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
美凌格栋栋酱 美凌格栋栋酱
6个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
Jacquelyn38 Jacquelyn38
4年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
SpringBoot整合Redis乱码原因及解决方案
问题描述:springboot使用springdataredis存储数据时乱码rediskey/value出现\\xAC\\xED\\x00\\x05t\\x00\\x05问题分析:查看RedisTemplate类!(https://oscimg.oschina.net/oscnet/0a85565fa
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Easter79 Easter79
3年前
SpringBoot整合Redis乱码原因及解决方案
问题描述:springboot使用springdataredis存储数据时乱码rediskey/value出现\\xAC\\xED\\x00\\x05t\\x00\\x05问题分析:查看RedisTemplate类!(https://oscimg.oschina.net/oscnet/0a85565fa
Wesley13 Wesley13
3年前
560字带你彻底搞懂:MySQL的索引优化分析
正文一、SQL分析性能下降、SQL慢、执行时间长、等待时间长查询语句写得差索引失效关联查询太多join(设计缺陷)单值索引:在user表中给name属性创建索引,createindexidx\_nameonu
Wesley13 Wesley13
3年前
BUG关闭原因
以前用禅道和redmine管理bug的时候,对立面的bug关闭原因不太满意,后来整理了一下,也许有人能用得到。已解决:缺陷已经修复。重复缺陷:是指在系统里相同原因的缺陷已经被其他人报告。在此缺陷被作为重复缺陷返回时,先不要立即取消。必须等到核查修复后,才在系统里取消。这是因为有些缺陷被误认为是重复缺陷,实际上是不同原因造成的问
Wesley13 Wesley13
3年前
BUG描述规范管理
BUG:软件系统中存在的可能导致系统出错、失效、死机等问题的错误或缺陷。描述一个缺陷,需要以下核心要素标题:用简洁的话描述该缺陷,主要让开发知道这是一个什么样的缺陷参数设置:Bug的类型(功能/性能/界面等),Bug的严重程度、Bug优先级(是否需要立即修复等)、所属项目模块、项目的版本号详细描述:便于开发重现
Stella981 Stella981
3年前
Linux日志安全分析技巧
0x00前言我正在整理一个项目,收集和汇总了一些应急响应案例(不断更新中)。GitHub地址:https://github.com/Bypass007/EmergencyResponseNotes本文主要介绍Linux日志分析的技巧,更多详细信息请访问Github地址,欢迎Star。0x01日志简介Lin
缺陷分析方法简介
常用的缺陷分析方法有:缺陷根因分析法、四象限缺陷分析法、ODC缺陷分析法、Rayleigh缺陷分析法和Gompertz缺陷分析法等等