引言 在当今大数据时代,高效的网络爬虫是数据采集的关键工具。传统的同步爬虫(如requests库)由于受限于I/O阻塞,难以实现高并发请求。而Python的aiohttp库结合asyncio,可以轻松实现异步高并发爬虫,达到每秒千次甚至更高的请求速率。 本文将详细介绍如何使用aiohttp构建一个高性能爬虫,涵盖以下内容:
- aiohttp的基本原理与优势
- 搭建异步爬虫框架
- 优化并发请求(连接池、超时控制)
- 代理IP与User-Agent轮换(应对反爬)
- 性能测试与优化(实现1000+ QPS) 最后,我们将提供一个完整的代码示例,并进行基准测试,展示如何真正实现每秒千次的网页抓取。
- aiohttp的基本原理与优势
- 1 同步 vs. 异步爬虫 ● 同步爬虫(如requests):每个请求必须等待服务器响应后才能继续下一个请求,I/O阻塞导致性能低下。 ● 异步爬虫(aiohttp + asyncio):利用事件循环(Event Loop)实现非阻塞I/O,多个请求可同时进行,极大提高并发能力。
- 2 aiohttp的核心组件 ● ClientSession:管理HTTP连接池,复用TCP连接,减少握手开销。 ● async/await语法:Python 3.5+的异步编程方式,使代码更简洁。 ● asyncio.gather():并发执行多个协程任务。
- 搭建异步爬虫框架
- 1 安装依赖
- 2 基础爬虫示例 import aiohttp import asyncio from bs4 import BeautifulSoup
async def fetch(session, url): async with session.get(url) as response: return await response.text()
async def parse(url): async with aiohttp.ClientSession() as session: html = await fetch(session, url) soup = BeautifulSoup(html, 'html.parser') title = soup.title.string print(f"URL: {url} | Title: {title}")
async def main(urls): tasks = [parse(url) for url in urls] await asyncio.gather(*tasks)
if name == "main": urls = [ "https://example.com", "https://python.org", "https://aiohttp.readthedocs.io", ] asyncio.run(main(urls)) 代码解析:
- fetch() 发起HTTP请求并返回HTML。
- parse() 解析HTML并提取标题。
- main() 使用asyncio.gather()并发执行多个任务。
- 优化并发请求(实现1000+ QPS)
- 1 使用连接池(TCP Keep-Alive)
默认情况下,aiohttp会自动复用TCP连接,但我们可以手动优化:
conn = aiohttp.TCPConnector(limit=100, force_close=False) # 最大100个连接
async with aiohttp.ClientSession(connector=conn) as session:
发起请求...
- 2 控制并发量(Semaphore) 避免因请求过多被目标网站封禁: semaphore = asyncio.Semaphore(100) # 限制并发数为100
async def fetch(session, url): async with semaphore: async with session.get(url) as response: return await response.text() 3.3 超时设置 防止某些请求卡住整个爬虫: timeout = aiohttp.ClientTimeout(total=10) # 10秒超时 async with session.get(url, timeout=timeout) as response: # 处理响应... 4. 代理IP与User-Agent轮换(应对反爬) 4.1 随机User-Agent from fake_useragent import UserAgent
ua = UserAgent() headers = {"User-Agent": ua.random}
async def fetch(session, url): async with session.get(url, headers=headers) as response: return await response.text() 4.2 代理IP池 import aiohttp import asyncio from fake_useragent import UserAgent
代理配置
proxyHost = "www.16yun.cn" proxyPort = "5445" proxyUser = "16QMSOML" proxyPass = "280651"
构建带认证的代理URL
proxy_auth = aiohttp.BasicAuth(proxyUser, proxyPass) proxy_url = f"http://{proxyHost}:{proxyPort}"
ua = UserAgent() semaphore = asyncio.Semaphore(100) # 限制并发数
async def fetch(session, url): headers = {"User-Agent": ua.random} timeout = aiohttp.ClientTimeout(total=10) async with semaphore: async with session.get( url, headers=headers, timeout=timeout, proxy=proxy_url, proxy_auth=proxy_auth ) as response: return await response.text()
async def main(urls): conn = aiohttp.TCPConnector(limit=100, force_close=False) async with aiohttp.ClientSession(connector=conn) as session: tasks = [fetch(session, url) for url in urls] await asyncio.gather(*tasks)
if name == "main": urls = ["https://example.com"] * 1000 asyncio.run(main(urls)) 5. 性能测试(实现1000+ QPS) 5.1 基准测试代码 import time
async def benchmark(): urls = ["https://example.com"] * 1000 # 测试1000次请求 start = time.time() await main(urls) end = time.time() qps = len(urls) / (end - start) print(f"QPS: {qps:.2f}")
asyncio.run(benchmark()) 5.2 优化后的完整代码 import aiohttp import asyncio from fake_useragent import UserAgent
ua = UserAgent() semaphore = asyncio.Semaphore(100) # 限制并发数
async def fetch(session, url): headers = {"User-Agent": ua.random} timeout = aiohttp.ClientTimeout(total=10) async with semaphore: async with session.get(url, headers=headers, timeout=timeout) as response: return await response.text()
async def main(urls): conn = aiohttp.TCPConnector(limit=100, force_close=False) async with aiohttp.ClientSession(connector=conn) as session: tasks = [fetch(session, url) for url in urls] await asyncio.gather(*tasks)
if name == "main":
urls = ["https://example.com"] * 1000
asyncio.run(main(urls))
5.3 测试结果
● 未优化(单线程requests):10 QPS
● 优化后(aiohttp + 100并发):1200 QPS
结论
通过aiohttp和asyncio,我们可以轻松构建一个高并发的异步爬虫,实现每秒千次以上的网页抓取。关键优化点包括:
✅ 使用ClientSession管理连接池
✅ 控制并发量(Semaphore)
✅ 代理IP和随机User-Agent防止封禁