汽车制造企业如何最大化数据资产价值?

逻辑织风使
• 阅读 602

近几年,人工智能、大数据、云计算等新兴技术深刻影响着汽车和出行领域。随着汽车行业的数字化转型正式进入快车道,车企收集的车辆数据也呈爆炸式的增长,如何利用数据获取洞察,不断提升运营能力和服务水平,同时又能有效降低成本、提高质量和生产效率,已然成为各大车企数字化升级的方向。

目前国内不少汽车企业依托于 Hadoop 生态,如 HDFS、MapReduce、Hive、Spark、HBase 等,搭建自有的 DMP 数据管理平台,实现数据源的收集与管理,通过数据加工与分析,再对接 BI 应用实现自助式查询与分析,进而支撑企业各类数字化场景应用,如渠道网络管理、售后等,最终助力企业在智能制造和车联网领域整体战略的落地。随着汽车行业数字化转型的加速和数据规模的扩大,需分析的数据量也成 TB 甚至 PB 级增长,随之而来的以下问题亟需解决:

  • 数据资产的复用差:在进行数据模型资产开发时,大多数模型资产通过脚本或代码实现,难以沉淀可视化、易复用的数据模型资产;
  • 业务响应周期长:传统开发模式下,技术门槛要求较高,且以固定化需求开发为主,单个主题的开发周期基本需要一周甚至更久方可交付业务方使用,从实际角度讲,应对需求的敏捷性不高;
  • 数据时效性较差:当即席分析的细分主题宽表数据量较大(千万行级以上)时,一般做法是 DMP 平台不直连 BI 工具,采用 BI 工具的数据提取方式对相对固定组合进行预加速进而支撑分析应用。但从中台提取数据(如 Tableau Hyper/TDE)再加载至 BI server,可能需要几十分钟甚至更久,非分布式架构的资源抢占情况也时有发生,无法稳定保障出数效率;
  • 数据查询响应慢:随着数据量增加,当要分析的数据量达到千万级甚至更大时(如:车辆 VIN 码级别分析),因底层数据基础平台架构大多采用 MPP,前端 BI 难以应对业务用户高并发访问模式下即席查询的响应需求;
  • 数据安全性低:由于车联网应用服务的实现需要收集各类信息,包括可能的敏感信息(如路径规划、行驶轨迹等)。传统解决方案只支持到项目/表级别的权限控制,而对行/列级(单元格级)权限难以较好地设防管控力度。如何实现更精确的数据安全策略,也逐步成为各大车企关注的重点之一。

因此,尽管车企内部有丰富的数据资源,但这些数据能否敏捷沉淀成数据资产,以及对车企下游业务应用及创新赋能,成为了各汽车厂商寻求数字化升级或转型之路的重要组成部分。

目前,在众多车企的大数据应用体系中,Kyligence 已成为重要的数据分析引擎底座,正与各车企共同解决大数据在应用、管理和安全等难题。在提供海量数据分析的高性能、高并发关键能力的同时,Kyligence 还能满足统一数据服务、沉淀多维模型资产、精细安全策略等平台级要求。另外,从应用层角度讲,Kyligence 与 Tableau 等主流 BI 平台无缝集成,可在 BI 工具轻松直连 Kyligence 进行灵活业务分析及探索(非数据提取方式),大大提升了数据分析的敏捷性。

汽车制造企业如何最大化数据资产价值?

Kyligence 智能多维数据库赋能数字化应用(以 Tableau 为例)

Kyligence 智能多维数据库赋能各大车企进行数据资产价值挖掘:

  • 增强数据资产的可复用性:Kyligence 产品帮助企业实现低门槛、可视化沉淀数据模型资产,支持定义标准化的指标口径定义,可为业务提供统一受治理、可复用的数据应用集市;
  • 缩短数据交付周期:Kyligence 可视化的模型开发方式,大大降低数据建模人员模型设计门槛,同时加速模型的开发速度,单主题开发交付周期将能从周缩短到天,较大程度提升数据需求交付的敏捷性;
  • 高性能灵活分析能力:Kyligence 支持无缝集成 Tableau 等主流 BI 工具。在 Kyligence 沉淀数据模型后,开发人员可通过 Tableau 等 BI 工具直连方式即席分析海量数据,查询响应时效能从分钟级提升至亚秒级,大大增强业务洞察对市场变化的敏锐度,对及时调整市场经营策略等有较大促进效果;
  • 单元格级别权限管控:Kyligence 支持行/列级数据权限控制,可以极大限度地适配各企业不同粒度的数据安全管控要求。

Kyligence 致力于打造下一代企业级智能多维数据库,有效帮助企业简化多维数据分析、缩短数据资产的开发流程,释放业务自助分析潜力。目前 Kyligence 已经和国内的多家车企建立了大数据平台的生态合作关系,为多家企业提供了成本最优的多维数据分析能力,帮助车企更好地支撑 BI 分析、灵活查询和车联网级数据服务等多类应用场景。

了解更多汽车制造行业的解决方案和真实案例,欢迎大家点击「链接」报名8月30日线上研讨会!

关于 Kyligence

上海跬智信息技术有限公司 (Kyligence) 由 Apache Kylin 创始团队于 2016 年创办,致力于打造下一代企业级智能多维数据库,为企业简化数据湖上的多维数据分析(OLAP)。通过 AI 增强的高性能分析引擎、统一 SQL 服务接口、业务语义层等功能,Kyligence 提供成本最优的多维数据分析能力,支撑企业商务智能(BI)分析、灵活查询和互联网级数据服务等多类应用场景,助力企业构建更可靠的指标体系,释放业务自助分析潜力。

Kyligence 已服务中国、美国、欧洲及亚太的多个银行、证券、保险、制造、零售等行业客户,包括建设银行、浦发银行、招商银行、平安银行、宁波银行、太平洋保险、中国银联、上汽、Costa、UBS、MetLife 等全球知名企业,并和微软、亚马逊、华为、Tableau 等技术领导者达成全球合作伙伴关系。目前公司已经在上海、北京、深圳、厦门、武汉及美国的硅谷、纽约、西雅图等开设分公司或办事机构。

点赞
收藏
评论区
推荐文章
汽车信息安全相关岗位招聘简章
公司简介天津某央企,作为中国汽车行业最重要的数据资源整合及服务机构,在工业和信息化部、商务部等部门的领导和支持下,积极推进信息化与工业化融合,以综合解决方案为主要手段促进汽车行业的可持续发展,建立了基于“大数据、大平台、大计算”三大领域的多维
数据堂 数据堂
2年前
车企提“智”升级,车载语音识别技术成就语音交互新体验
近年来,随着人工智能和语音技术的不断发展,汽车行业加速变革,自动驾驶、智能网联、语音控制等全新体验,日益成为消费者选购高端智能电动汽车的核心出发点。为了顺应消费需求多元化趋势,为了提供更加智能、便捷、个性化的用户体验,车企提“智”升级,对车载语音交互系统的
数据堂 数据堂
2年前
车内语音识别数据:驱动智能出行的新动力
随着人们对智能化出行的需求不断增长,车内语音识别技术成为了汽车领域的重要创新。而这项技术的发展离不开车内语音识别数据的支持,它为智能车辆提供了更加便捷、智能的人机交互体验。车内语音识别数据是指在汽车内部收集的语音样本,用于训练车载语音识别系统。这些数据包括
数据处理巅峰体验:HANA助力企业飞跃
在数字化时代,数据处理能力已成为企业竞争力的核心要素。然而,随着数据量的爆炸式增长和复杂性的不断提升,传统数据处理方式已难以满足企业的需求。在这一背景下,SAP以其卓越的性能和智能化功能,为企业带来了数据处理的巅峰体验,助力企业实现飞跃式发展。一、数据处理
专注IP定位 专注IP定位
1年前
什么是数据治理?你都了解吗?
在当今数字化时代,数据已成为企业重要的战略资产。有效管理数据对于企业提高运营效率、降低成本、做出更好的决策至关重要。数据治理作为一种重要的管理方法,可以帮助企业确保数据的质量、安全、合规性和有效利用。一、数据治理的定义与重要性近日,国家标准GB/T4369
数字化时代的数据管理:多样化数据库选型指南
非常感谢Kevin和张健对本文提供的建议和指导。1.概述在数字化时代,数据是企业最宝贵的资产之一。随着技术的进步和数据量的爆炸性增长,如何有效地存储、管理和分析这些数据成为每个企业面临的重大挑战。数据库作为数据管理的核心技术,其选型对于系统至关重要。传统的
构建数据工程师能力模型,实战八大企业级项目完结无密
数据工程师:大数据时代的核心驱动力在当今这个数据爆炸的时代,数据已成为企业最宝贵的资产之一。如何高效地收集、处理、分析并利用这些数据,成为企业获取竞争优势的关键。数据工程师,作为这一过程中的核心角色,正逐渐成为大数据技术领域不可或缺的专业人才。本文将从数据
数字先锋 | 车企,出海!天翼云AOne擦亮车企“智慧服务”新名片!
近年来,中国汽车市场迎来巨变,消费者的消费习惯不断变迁,价格战愈演愈烈......如何紧跟数字化转型步伐,实现稳健经营,成为车企所面临的时代命题。
万界星空科技 万界星空科技
3个月前
中小企业选择云MES,实现数字化转型
在数字化浪潮下,中小企业选择云MES(制造执行系统)实现数字化转型是提升竞争力、实现可持续发展的关键举措。一、数字化转型的好处数字化转型能为中小企业带来多方面的提升:1.提高运营效率:优化生产流程,减少人工操作,提高自动化水平,降低成本并提升效率。还能实时
一朵云开启智慧交通新未来
“聪明的车”上“智慧的路”靠的是“灵活的网”配“强大的云”作为交通出行的重要载体及交通系统当中的核心环节,汽车的智能化和网联化是未来发展的重要方向。车联网运用大数据和云计算手段,对车辆位置、速度和路线信息、驾驶人信息、道路拥堵事故信息以及各种多媒体应用领域等重要信息元素进行整理与计算,实现无人驾驶汽车、智能汽车网络化交互性控制。WHAT——什么是车联网?车联
数据治理之构建数据资产目录
本文分享自天翼云开发者社区《》,作者:徐东一、引言现如今,数据已经成为企业实现业务价值的关键。随着大数据技术的发展,企业对于数据的收集、分析和利用越来越重视。其中,数据资产化已经成为企业数据管理的重要趋势,它能帮助企业更好地发掘和利用数据中的价值,从而提升