Python 实现循环的最快方式(for、while 等速度对比)

垃圾回收官
• 阅读 486

众所周知,Python 不是一种执行效率较高的语言。此外在任何语言中,循环都是一种非常消耗时间的操作。假如任意一种简单的单步操作耗费的时间为 1 个单位,将此操作重复执行上万次,最终耗费的时间也将增长上万倍。

whilefor 是 Python 中常用的两种实现循环的关键字,它们的运行效率实际上是有差距的。比如下面的测试代码:

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354

这是一个简单的求和操作,计算从 1 到 n 之间所有自然数的总和。可以看到 for 循环相比 while 要快 1.5 秒。

其中的差距主要在于两者的机制不同。

在每次循环中,while 实际上比 for 多执行了两步操作:边界检查和变量 i 的自增。即每进行一次循环,while 都会做一次边界检查 (while i < n)和自增计算(i +=1)。这两步操作都是显式的纯 Python 代码。

for 循环不需要执行边界检查和自增操作,没有增加显式的 Python 代码(纯 Python 代码效率低于底层的 C 代码)。当循环的次数足够多,就出现了明显的效率差距。

可以再增加两个函数,在 for 循环中加上不必要的边界检查和自增计算:

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def for_loop_with_inc(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
        i += 1
    return s


def for_loop_with_test(n=100_000_000):
    s = 0
    for i in range(n):
        if i < n:
            pass
        s += i
    return s


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('for loop with increment\t\t',
          timeit.timeit(for_loop_with_inc, number=1))
    print('for loop with test\t\t', timeit.timeit(for_loop_with_test, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => for loop with increment          4.602369500091299
# => for loop with test               4.18337869993411

可以看出,增加的边界检查和自增操作确实大大影响了 for 循环的执行效率。

前面提到过,Python 底层的解释器和内置函数是用 C 语言实现的。而 C 语言的执行效率远大于 Python。

对于上面的求等差数列之和的操作,借助于 Python 内置的 sum 函数,可以获得远大于 forwhile 循环的执行效率。

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def sum_range(n=100_000_000):
    return sum(range(n))


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('sum range\t\t', timeit.timeit(sum_range, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => sum range                0.8658821999561042

可以看到,使用内置函数 sum 替代循环之后,代码的执行效率实现了成倍的增长。

内置函数 sum 的累加操作实际上也是一种循环,但它由 C 语言实现,而 for 循环中的求和操作是由纯 Python 代码 s += i 实现的。C > Python。

再拓展一下思维。小时候都听说过童年高斯巧妙地计算 1 到 100 之和的故事。1…100 之和等于 (1 + 100) * 50。这个计算方法同样可以应用到上面的求和操作中。

import timeit


def while_loop(n=100_000_000):
    i = 0
    s = 0
    while i < n:
        s += i
        i += 1
    return s


def for_loop(n=100_000_000):
    s = 0
    for i in range(n):
        s += i
    return s


def sum_range(n=100_000_000):
    return sum(range(n))


def math_sum(n=100_000_000):
    return (n * (n - 1)) // 2


def main():
    print('while loop\t\t', timeit.timeit(while_loop, number=1))
    print('for loop\t\t', timeit.timeit(for_loop, number=1))
    print('sum range\t\t', timeit.timeit(sum_range, number=1))
    print('math sum\t\t', timeit.timeit(math_sum, number=1))


if __name__ == '__main__':
    main()
# => while loop               4.718853999860585
# => for loop                 3.211570399813354
# => sum range                0.8658821999561042
# => math sum                 2.400018274784088e-06

最终 math sum 的执行时间约为 2.4e-6,缩短了上百万倍。这里的思路就是,既然循环的效率低,一段代码要重复执行上亿次。

索性直接不要循环,通过数学公式,把上亿次的循环操作变成只有一步操作。效率自然得到了空前的加强。

最后的结论(有点谜语人):

实现循环的最快方式—— —— ——就是不用循环

对于 Python 而言,则尽可能地使用内置函数,将循环中的纯 Python 代码降到最低。

当然,内置函数在某些情况下还不是最快的。比如在创建列表的时候,是字面量写法的速度更快。

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
java基础语法循环结构
循环结构是指在程序中需要反复执行某个功能而设置的一种程序结构。Java中主要的循环结构:while循环(适用情况,固定次数循环)do…while循环(适用情况,“当.....”循环)for循环(适用情况,“直到....”循环)while循环while是最基本的循环,它的结构为:whi
Karen110 Karen110
3年前
​一篇文章总结一下Python库中关于时间的常见操作
前言本次来总结一下关于Python时间的相关操作,有一个有趣的问题。如果你的业务用不到时间相关的操作,你的业务基本上会一直用不到。但是如果你的业务一旦用到了时间操作,你就会发现,淦,到处都是时间操作。。。所以思来想去,还是总结一下吧,本次会采用类型注解方式。time包importtime时间戳从1970年1月1日00:00:00标准时区诞生到现在
Stella981 Stella981
3年前
Python服务器开发一:python基础
Python(蟒蛇)是一种动态解释型的编程语言。Python可以在Windows、UNIX、MAC等多种操作系统上使用,也可以在Java、.NET开发平台上使用。【特点】1Python使用C语言开发,但是Python不再有C语言中的指针等复杂的数据类型。2Python具有很强的面向对象特性,而且简化了面向对象的实现。它消除了保护类型、抽象类、
Stella981 Stella981
3年前
Panda处理文本和时序数据?首选向量化
导读Pandas作为Python数据分析的首选框架,不仅功能强大接口丰富,而且执行效率也相比原生Python要快的多,这是得益于Pandas底层由C实现,同时其向量化执行方式也非常利于并行计算。更重要的是,这种向量化操作不仅适用于数值计算,对于文本和时间格式也有着良好的支持,而这就不得不从Pandas的属性接口谈起。腾讯课堂|
Stella981 Stella981
3年前
Python技巧之循环体中的条件分支
Python的‘for’和‘while’循环支持‘else’分句,分句仅在循环体没有触发‘break’语句并终止时执行。Python'sforandwhileloopssupportanelseclausethatexecutesonlyiftheloopsterminates
Wesley13 Wesley13
3年前
Java循环结构
Java循环结构for,while和do...while顺序结构的程序语句只能被执行一次。如果您想要同样的操作执行多次,就需要使用循环结构。while循环do...while循环for循环在Java5中引入了一种主要用于数组的增强
Stella981 Stella981
3年前
Linux查看用户信息
查看用户信息ww显示信息的含义  JCPU:以终端代号来区分,该终端所有相关的进程执行时,所消耗的CPU时间会显示在这里  PCPU:CPU执行程序耗费的时间  WHAT:用户正在执行的操作  loadaverage:分别显示系统在过去1、5、15分钟内的平均负载程度  FROM:显示用户从何处登陆系统,
小万哥 小万哥
1年前
Python 循环
Python有两个基本的循环命令:while循环for循环while循环使用while循环,我们可以在条件为真的情况下执行一组语句。示例,打印i,只要i小于6:pythoni1whilei<6:print(i)i1注意:记得增加i的值,否则循环将永远继续
小万哥 小万哥
1年前
深入解析 C 语言中的 for 循环、break 和 continue
C语言中的for循环当您确切地知道要循环执行代码块的次数时,可以使用for循环而不是while循环cfor(语句1;语句2;语句3)//要执行的代码块语句1在执行代码块之前执行(一次)。语句2定义执行代码块的条件。语句3在执行代码块后执行(每次)。下面的示
小万哥 小万哥
10个月前
Kotlin 控制流和数组操作详解
Kotlin的when表达式提供了一种比if..else更清晰的方式来选择执行多个代码块之一,类似于Java的switch语句但更为强大和灵活。while循环允许在条件为真时重复执行代码块,而do..while循环则保证至少执行一次。break和continue可用于控制循环流程:前者终止循环,后者跳过当前迭代。数组则用于存储多个值,可以创建、访问、修改数组元素及遍历整个数组。这些构造使得编写简洁且高效的代码成为可能。