原文链接:http://tecdat.cn/?p=4224
分析复杂的季节模式
当时间序列数据的频率高于季度或月度时,许多预测程序在分析季节性影响方面遇到了障碍。
澳大利亚蒙纳士大学的研究人员在美国统计协会杂志(JASA)上发表了一篇有趣的论文,以及一个R程序,以处理这种情况 - 可称为“复杂的季节性”。
我已经更新并修改了他们的一项计算 - 使用每周而不是每日的美国常规汽油价格数据 - 并发现整个事情非常有趣。
每周频率可以让我们以一定的精度“进入”模式的年中摆动。从模型的样本外性能来看,这种“摆动”在某些情况下可能会更加突出并且非常重要。
适合于较高频率数据的Trignometric系列提取tbats(。)中的季节性模式,其还具有其他高级特征,例如估计残差的ARMA(自回归移动平均)模型的能力。
我没有完全优化估算,但这些结果足够强大,可以鼓励探索切换和开关程序。
在此聚合级别工作的另一个例程是stlf(。)例程。这是使用STL分解在第36章基于时间序列分解的模式发现中详细描述的数据挖掘论文集。