使用PyTorch实现L1, L2和Elastic Net正则化

画蛇添足
• 阅读 175

在机器学习中,L1正则化、L2正则化和Elastic Net正则化是用来避免过拟合的技术,它们通过在损失函数中添加一个惩罚项来实现。

使用PyTorch实现L1, L2和Elastic Net正则化

正则化介绍

L1 正则化(Lasso回归)

L1 正则化通过向损失函数添加参数的绝对值的和来实施惩罚,公式可以表示为:

使用PyTorch实现L1, L2和Elastic Net正则化

其中 L0 是原始的损失函数,λ 是正则化强度,wi是模型参数。

L1 正则化的特点是它可以产生稀疏模型,即许多模型参数会被设置为零。这种特性使得L1正则化不仅可以防止过拟合,还可以进行特征选择。

L2 正则化(Ridge回归)

L2 正则化通过添加参数的平方和来施加惩罚,公式为:

使用PyTorch实现L1, L2和Elastic Net正则化

λ 控制着正则化的强度。

L2 正则化倾向于让参数值趋近于零但不会完全为零,这有助于处理参数值过大的问题,从而减少模型在训练数据上的过拟合。

Elastic Net 正则化

Elastic Net 正则化是L1和L2正则化的组合,它在损失函数中同时添加了L1和L2惩罚项,公式为:

使用PyTorch实现L1, L2和Elastic Net正则化

这种方法结合了L1和L2的优点,既可以产生稀疏模型,也可以平滑模型参数。

在实际应用中,Elastic Net特别适合于那些特征数量多于样本数量,或者特征之间高度相关的情况。

在sklearn中,我们可以使用内置的回归函数来实现

Lasso回归是应用L1正则化的典型模型。它可以通过

Lasso

类实现;Ridge回归使用L2正则化。它可以通过

Ridge

类来实现;Elastic Net回归结合了L1和L2正则化。它通过

ElasticNet

类实现

Pytorch代码实现

但是这些都是最简单的线性回归的扩展,通过上面的介绍,我们看到这些正则化的方式都是通过修改模型本身的权重来实现的,所以我们可以在MLP上也使用这些正则化的方法,下面我们将使用Pytorch来演示这个步骤

首先我们看下L1

 importos
 importtorch
 fromtorchimportnn
 fromtorchvision.datasetsimportMNIST
 fromtorch.utils.dataimportDataLoader
 fromtorchvisionimporttransforms
 
 classMLP(nn.Module):
   '''
     Multilayer Perceptron.
   '''
   def__init__(self):
     super().__init__()
     self.layers=nn.Sequential(
       nn.Flatten(),
       nn.Linear(28*28*1, 64),
       nn.ReLU(),
       nn.Linear(64, 32),
       nn.ReLU(),
       nn.Linear(32, 10)
     )
 
 
   defforward(self, x):
     '''Forward pass'''
     returnself.layers(x)
   
   defcompute_l1_loss(self, w):
       returntorch.abs(w).sum()
   
   
 if__name__=='__main__':
   
   # Set fixed random number seed
   torch.manual_seed(42)
   
   # Prepare CIFAR-10 dataset
   dataset=MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
   trainloader=torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=1)
   
   # Initialize the MLP
   mlp=MLP()
   
   # Define the loss function and optimizer
   loss_function=nn.CrossEntropyLoss()
   optimizer=torch.optim.Adam(mlp.parameters(), lr=1e-4)
   
   # Run the training loop
   forepochinrange(0, 5): # 5 epochs at maximum
     
     # Print epoch
     print(f'Starting epoch {epoch+1}')
     
     # Iterate over the DataLoader for training data
     fori, datainenumerate(trainloader, 0):
       
       # Get inputs
       inputs, targets=data
       
       # Zero the gradients
       optimizer.zero_grad()
       
       # Perform forward pass
       outputs=mlp(inputs)
       
       # Compute loss
       loss=loss_function(outputs, targets)
       
       # Compute L1 loss component
       l1_weight=1.0
       l1_parameters= []
       forparameterinmlp.parameters():
           l1_parameters.append(parameter.view(-1))
       l1=l1_weight*mlp.compute_l1_loss(torch.cat(l1_parameters))
       
       # Add L1 loss component
       loss+=l1
       
       # Perform backward pass
       loss.backward()
       
       # Perform optimization
       optimizer.step()
       
       # Print statistics
       minibatch_loss=loss.item()
       ifi%500==499:
           print('Loss after mini-batch %5d: %.5f (of which %.5f L1 loss)'%
                 (i+1, minibatch_loss, l1))
           current_loss=0.0
 
   # Process is complete.
   print('Training process has finished.')

我们在本身的一个简单的MLP中增加了一个

compute_l1_loss

方法,在我们计算完基本的损失后,还会计算模型参数的L1 损失,然后与基本损失相加,最后使用这个最终损失来进行反向传播。

L2正则化也很容易。我们不取权重值的绝对值,而是取它们的平方。

 importos
 importtorch
 fromtorchimportnn
 fromtorchvision.datasetsimportMNIST
 fromtorch.utils.dataimportDataLoader
 fromtorchvisionimporttransforms
 
 classMLP(nn.Module):
   '''
     Multilayer Perceptron.
   '''
   def__init__(self):
     super().__init__()
     self.layers=nn.Sequential(
       nn.Flatten(),
       nn.Linear(28*28*1, 64),
       nn.ReLU(),
       nn.Linear(64, 32),
       nn.ReLU(),
       nn.Linear(32, 10)
     )
 
 
   defforward(self, x):
     '''Forward pass'''
     returnself.layers(x)
   
   defcompute_l2_loss(self, w):
       returntorch.square(w).sum()
   
   
 if__name__=='__main__':
   
   # Set fixed random number seed
   torch.manual_seed(42)
   
   # Prepare CIFAR-10 dataset
   dataset=MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
   trainloader=torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=1)
   
   # Initialize the MLP
   mlp=MLP()
   
   # Define the loss function and optimizer
   loss_function=nn.CrossEntropyLoss()
   optimizer=torch.optim.Adam(mlp.parameters(), lr=1e-4)
   
   # Run the training loop
   forepochinrange(0, 5): # 5 epochs at maximum
     
     # Print epoch
     print(f'Starting epoch {epoch+1}')
     
     # Iterate over the DataLoader for training data
     fori, datainenumerate(trainloader, 0):
       
       # Get inputs
       inputs, targets=data
       
       # Zero the gradients
       optimizer.zero_grad()
       
       # Perform forward pass
       outputs=mlp(inputs)
       
       # Compute loss
       loss=loss_function(outputs, targets)
       
       # Compute l2 loss component
       l2_weight=1.0
       l2_parameters= []
       forparameterinmlp.parameters():
           l2_parameters.append(parameter.view(-1))
       l2=l2_weight*mlp.compute_l2_loss(torch.cat(l2_parameters))
       
       # Add l2 loss component
       loss+=l2
       
       # Perform backward pass
       loss.backward()
       
       # Perform optimization
       optimizer.step()
       
       # Print statistics
       minibatch_loss=loss.item()
       ifi%500==499:
           print('Loss after mini-batch %5d: %.5f (of which %.5f l2 loss)'%
                 (i+1, minibatch_loss, l2))
           current_loss=0.0
 
   # Process is complete.
   print('Training process has finished.')

最终的计算过程和L1正则化一样,只不过是计算附加损失的方法不同。

对于L2的正则化Pytorch的Adam优化器有一个官方的参数,叫做权重衰减 weight_decay

 optimizer = torch.optim.Adam(mlp.parameters(), lr=1e-4, weight_decay=1.0)

你可能不知道他和L2的关系,但是你一定用到过,所以我们这样一解释就非常明白了对吧

最后就是Elastic Net (L1 + L2)

 classMLP(nn.Module):
   '''
     Multilayer Perceptron.
   '''
   def__init__(self):
     super().__init__()
     self.layers=nn.Sequential(
       nn.Flatten(),
       nn.Linear(28*28*1, 64),
       nn.ReLU(),
       nn.Linear(64, 32),
       nn.ReLU(),
       nn.Linear(32, 10)
     )
 
 
   defforward(self, x):
     '''Forward pass'''
     returnself.layers(x)
   
   defcompute_l1_loss(self, w):
       returntorch.abs(w).sum()
   
   defcompute_l2_loss(self, w):
       returntorch.square(w).sum()
   
   
 if__name__=='__main__':
   
   # Set fixed random number seed
   torch.manual_seed(42)
   
   # Prepare CIFAR-10 dataset
   dataset=MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
   trainloader=torch.utils.data.DataLoader(dataset, batch_size=10, shuffle=True, num_workers=1)
   
   # Initialize the MLP
   mlp=MLP()
   
   # Define the loss function and optimizer
   loss_function=nn.CrossEntropyLoss()
   optimizer=torch.optim.Adam(mlp.parameters(), lr=1e-4)
   
   # Run the training loop
   forepochinrange(0, 5): # 5 epochs at maximum
     
     # Print epoch
     print(f'Starting epoch {epoch+1}')
     
     # Iterate over the DataLoader for training data
     fori, datainenumerate(trainloader, 0):
       
       # Get inputs
       inputs, targets=data
       
       # Zero the gradients
       optimizer.zero_grad()
       
       # Perform forward pass
       outputs=mlp(inputs)
       
       # Compute loss
       loss=loss_function(outputs, targets)
       
       # Specify L1 and L2 weights
       l1_weight=0.3
       l2_weight=0.7
       
       # Compute L1 and L2 loss component
       parameters= []
       forparameterinmlp.parameters():
           parameters.append(parameter.view(-1))
       l1=l1_weight*mlp.compute_l1_loss(torch.cat(parameters))
       l2=l2_weight*mlp.compute_l2_loss(torch.cat(parameters))
       
       # Add L1 and L2 loss components
       loss+=l1
       loss+=l2
       
       # Perform backward pass
       loss.backward()
       
       # Perform optimization
       optimizer.step()
       
       # Print statistics
       minibatch_loss=loss.item()
       ifi%500==499:
           print('Loss after mini-batch %5d: %.5f (of which %.5f L1 loss; %0.5f L2 loss)'%
                 (i+1, minibatch_loss, l1, l2))
           current_loss=0.0
 
   # Process is complete.
   print('Training process has finished.')

也非常的简单,并且我们可以设置两个权重,就是L1和L2的占比,使用不同的加权,可以获得更好的结果。

总结

这篇文章是要是为了介绍L1, L2和Elastic Net (L1+L2)正则化在理论上是如何工作的。并且我们也在PyTorch中使用了L1, L2和Elastic Net (L1+L2)正则化。这三种正则化方法在不同的情况和数据集上有不同的效果,选择哪种正则化方法取决于具体的应用场景和数据特性。

https://avoid.overfit.cn/post/c99ec105e41c4a71a0a1a29735245944

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
4年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Android蓝牙连接汽车OBD设备
//设备连接public class BluetoothConnect implements Runnable {    private static final UUID CONNECT_UUID  UUID.fromString("0000110100001000800000805F9B34FB");
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Stella981 Stella981
3年前
AJPFX总结关于Java中过滤出字母、数字和中文的正则表达式
1、Java中过滤出字母、数字和中文的正则表达式(1)过滤出字母的正则表达式\^(AZaz)\(2)过滤出数字的正则表达式\^(09)\(3)过滤出中文的正则表达式\^(\\\\u4e00\\\\u9fa5)\(4)过滤出字母、数字和中文的正则表达式\^(azAZ09\\\\u
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
美凌格栋栋酱 美凌格栋栋酱
5个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
画蛇添足
画蛇添足
Lv1
遥想江口依然,鸟啼花谢,今日谁为主。
文章
3
粉丝
0
获赞
0