MySQL到ClickHouse数据同步方案对比

赛博朋克
• 阅读 905

ClickHouse 在执行分析查询时的速度优势很好的弥补了 MySQL 的不足,但是对于很多开发者和DBA来说,如何将MySQL稳定、高效、简单的同步到 ClickHouse 却很困难。本文对比了 NineData、MaterializeMySQL(ClickHouse自带)、Bifrost 三款产品,看看他们在同步时的差异。

对比结果概述

整体上,NineData(官网:www.ninedata.cloud )的数据复制功能在功能、性能表现最突出。其次是Bifrost和ClickHouse自带的MaterializeMySQL。NineData在增量DDL的处理、字段映射的准确性、无主键表、以及功能丰富度上最强(数据校验、过滤、限流等),详细的对比如下图:

MySQL到ClickHouse数据同步方案对比

结构映射对比

在做了详细对比之后,对于基础类型,只有NineData考虑的更加完整,例如MySQL的datetime需要映射到ClickHouse的DateTime64,否则则可能出现数据丢失。如果使用Biforst或MaterializeMySQL等其他产品均映射到datetime可能会造成一定程度的数据精度丢失。

此外,在对比了MySQL全部数据类型之后,发现NineData支持更完整,例如对JSON类型、几何数据、地理信息仅NineData支持。此外,对于基础类型,也只有NineData考虑更加细致,使用Biforst或MaterializeMySQL等其他产品则可能导致精度丢失,从而造成数据丢失。

详细的对比如下图:

MySQL到ClickHouse数据同步方案对比

无主键表支持

NineData对记录做了特殊的标记处理,所以很好的支持了无主键表的数据同步。而MaterializeMySQL、Biforst均不支持。

详细的对比如下图:

MySQL到ClickHouse数据同步方案对比

增量DDL

对于数据增量同步,支持好各种类型的DDL是保障同步链路持续稳定的关键,NineData在无主键表DDL支持、字段删除、字段名修改等特殊操作均做了适配处理,可以很好的保障复制链路的问题。同时,NineData还提供了可视化的错误修复和跳过功能,可以最大限度的保障链路持续稳定。

详细的对比如下图:

MySQL到ClickHouse数据同步方案对比

限流、对比、过滤等

除了前面介绍的一般功能之外,为了提升数据质量、保障稳定,NineData还支持了包括数据对比、运行中的限流、数据过滤等功能。具体的说明如下:

MySQL到ClickHouse数据同步方案对比

同步性能对比

这里使用 sysbench工具生成了5000万行记录进行全量性能对比,再生成约1800万次DML(约5GB Binlog)进行增量性能对比。

对比中,全量同步 NineData 性能为36.2W RPS(每秒同步记录数)为最高;增量同步则是 ClickHouse 自带的同步工具 MaterializeMySQL 最高,需要注意,MaterializeMySQL 在错误处理上比较简单,如果报错则需要全部重新同步。

详细的对比如下:

  • 全量同步

通过sysbench生成10张表,每张表500W记录(5000W行),数据文件大小约为12G:

MySQL到ClickHouse数据同步方案对比

  • 增量同步

通过sysbench生成5G大小的BinLog日志(约1800W次DML),再进行增量同步:

MySQL到ClickHouse数据同步方案对比

总结

NineDatahttps://www.ninedata.cloud/) 在功能上领先其他同步工具,特别是字段类型的全面适配和增量复制期间DDL的支持度,并且在动态限流、数据对比、监控等能力上也支持的最完善。

所以,如果想把MySQL的数据实时同步到ClickHouse,推荐使用NineData,不仅使用简单(SaaS),并在满足功能和性能的前提下,实现了字段类型的无损转换和数据的实时复制,很好的解决MySQL 同步数据到ClickHouse的问题。

补充说明

当前各个云厂商虽然都提供ClickHouse托管服务,但是另一方面云厂商又都在发展自己的数仓产品,在同步功能支持上通常仅对自家的数仓产品支持比较好,而对ClickHouse同步支持都很薄弱。此外,开源工具Canal也因为不能很好的支持结构同步,使用和维护起来并不方便。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Stella981 Stella981
3年前
Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句python3authorlizmdatetime2018020110:00:00coding:utf8'''
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
为什么mysql不推荐使用雪花ID作为主键
作者:毛辰飞背景在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
美凌格栋栋酱 美凌格栋栋酱
4个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
赛博朋克
赛博朋克
Lv1
乡梦不曾休,惹甚闲愁?忠州过了又涪州
文章
4
粉丝
0
获赞
0