Stable diffusion中的models

AI伦理委员
• 阅读 235

Stable diffusion中的models

Stable diffusion model也可以叫做checkpoint model,是预先训练好的Stable diffusion权重,用于生成特定风格的图像。模型生成的图像类型取决于训练图像。

如果训练数据中从未出现过猫的图像,模型就无法生成猫的图像。同样,如果只用猫的图像来训练模型,它也只会生成猫的图像。

这里我们将介绍什么是模型,一些流行的模型,以及如何安装、使用和合并它们。

微调模型Fine-tuned models

在计算机视觉和自然语言处理领域,微调模型是指使用预训练模型,并在特定任务上进行进一步的训练,以使其适应特定的数据集或问题。通过微调,模型可以更好地理解和处理特定领域的信息,从而提高其性能和准确性。

微调的步骤

  1. 选择预训练模型:首先选择一个在大规模数据集上进行了预训练的模型,如BERT、ResNet等。
  2. 冻结部分层:通常情况下,我们会冻结模型的一部分层,以保留其在预训练数据集上学到的特征。
  3. 添加新层:根据特定任务的需求,我们会向模型中添加新的层或调整现有层的结构。
  4. 微调模型:利用特定任务的数据集,对模型进行进一步训练,以使其在该任务上表现更好。

微调的应用

微调模型在各种领域都有广泛的应用,包括情感分析、图像分类、语义分割等。通过微调,模型可以适应不同领域的特定数据分布,从而提高其泛化能力和适应性。

微调模型是一种有效的方法,可以帮助我们利用预训练模型的知识,快速构建并优化适用于特定任务的模型。通过合理的微调策略,我们可以更好地利用现有的模型和数据,从而取得更好的效果。

为什么人们要微调Stable diffusion模型?

Stable diffusion base模型非常出色,但并不是万能的。例如,它可以生成带有“动漫”关键词的动漫风格图片。然而,它可能很难生成特定子类型的动漫图片。

所以,通过微调可以生成不同风格的stable diffusion模型。下面是我们使用相同的提示词和设置,但是用不同模型生成的图片。

提示词如下:

a girl,0lg4kury,

其中0lg4kury是一个embedding。

我们分别使用了AnythingV5,dreamshaper_8和majicmixRealistic_v7这三个checkpoint来生成最终的图片。

大家可以看到,同样的提示词最后的图片效果是不同的。

其中AnythingV5是卡通风格,dreamshaper是真实绘画风格,而majicmixRealistic是真实照片风格。

Stable diffusion中的models

使用模型是实现特定风格的简单方式。

模型是如何创建的?

checkpoint模型是一种通过额外训练和Dreambooth技术创建的模型,它们基于稳定扩散v1.5或XL等基础模型进行改进。这些方法允许用户根据自己的特定需求和兴趣来定制AI模型,从而生成更加个性化和专业化的图像内容。

额外训练: 额外训练是指使用特定的数据集对基础模型进行进一步的训练。这种方法可以让你专注于某个特定的主题或领域,例如cat。通过使用相关的数据集,你可以调整模型的输出,使其更倾向于生成具有cat特征的图像。这种方法的关键在于选择合适的数据集,并确保其与你的生成目标相匹配。

Dreambooth: Dreambooth是由谷歌开发的一种技术,它允许用户通过少量的自定义图片(通常是3-5张)将特定的主题或对象注入到文本到图像模型中。例如,如果你想要在生成的图像中包含自己的形象,你可以拍摄几张照片,并通过Dreambooth将这些图片与模型结合。这样,当你在生成图像时使用特定的关键词,模型就会根据这些图片生成包含你形象的图像。Dreambooth训练的模型依赖于这个关键词来触发特定的生成效果。

除了checkpoint模型,还有其他的模型类型,如embedding、LoRA、LyCORIS和超网络,它们各自有不同的特点和应用场景。文本反演通过定义新的关键字来描述特定的对象或风格,而LoRA和LyCORIS则提供了更快速和灵活的训练选项。超网络则是一种在原有模型基础上添加附加网络的方法,用于学习新的生成特征。

在本文中,我们将重点关注checkpoint模型。

热门的stable diffussion模型

你可以在C站上找到成千上万的模型,这里我来列举几个比较常用的模型,供大家参考:

Stable diffusion v1.4

这是Stability AI于2022年8月发布的v1.4版本, 是首个公开可用的稳定扩散模型。

这是一个通用模型,能够产生各种风格的作品,但是现在已经很少有人使用了,现在大多数人已经转向了v1.5模型。

Stable diffusion v1.5

stable diffusion v1.5 是由 Stability AI 的合作伙伴 Runway ML 于 2022 年 10 月发布。该模型基于 v1.2 并进行了进一步的训练。

模型页面未提及改进之处。与 v1.4 相比,它产生了稍微不同的结果,但尚不清楚它们是否更好。

与 v1.4 一样,您可以将 v1.5 视为通用模型。根据我的经验,v1.5 是作为初始模型的不错选择,并且可以与 v1.4 互换使用。

Realistic Vision

Realistic Vision 非常适合生成任何逼真的内容,无论是人物、物体还是场景。

DreamShaper

DreamShaper模型经过微调,适用于介于照片逼真和计算机图形之间的肖像插画风格。

majicMIX realistic

majicMIX是一个很棒的写实模型。

SDXL模型

SDXL模型是备受赞誉的v1.5和被遗忘的v2模型的升级版本。

使用SDXL模型的好处包括:

  • 更高的原生分辨率- 1024像素,而v1.5只有512像素
  • 更高的图像质量(与v1.5基础模型相比)
  • 能够生成可读的文本
  • 更容易生成较暗的图像

    Anything

Anything 是一个专门训练的模型,用于生成高质量的动漫风格图片。它对于将名人形象转换为动漫风格非常有用,然后可以与插画元素无缝融合。

当然还有其他的一些非常不错的模型,大家可以多逛逛C站,那里有你所要的一切。

其他不错的模型

Deliberate v2

Stable diffusion中的models

Deliberate v2 是可以呈现逼真的插图。其结果可能会出乎意料地好。每当你有一个好的提示时,切换到这个模型,你会得到惊喜的结果。

F222

Stable diffusion中的models

F222模型在生成具有正确身体部位关系的美丽女性肖像方面非常棒。

ChilloutMix

Stable diffusion中的models

ChilloutMix是一个专门用于生成亚洲女性照片模型。它就像是F222的亚洲版。

在Stable Diffusion webUI中安装和使用models

要在web GUI中安装模型,可以从C站或者其他的网站上下载对应的模型,并将checkpoint模型文件放在以下文件夹中:

stable-diffusion-webui/models/Stable-diffusion/

然后点击左侧顶部checkpoint下拉框旁边的刷新按钮。

Stable diffusion中的models

在这个下拉列表中,你可以看到刚刚下载并安装好的模型。

还有一种方法,就是在txt2img或img2img页面中,选择Checkpoints标签页,也可以看到对应的模型。

Stable diffusion中的models

CLIP Skip

什么是CLIP Skip?

CLIP Skip是Stable Diffusion中用于图像生成的CLIP文本嵌入网络的一项功能,它表示跳过最后的几层。

CLIP是Stable Diffusion v1.5模型中使用的语言模型,它将提示中的文本标记转换为embedding。它是一个包含许多层的深度神经网络模型。CLIP Skip指的是要跳过多少个最后的层。在AUTOMATIC1111和许多Stable Diffusion软件中,CLIP Skip为1时不跳过任何层。CLIP Skip为2时跳过最后一层,依此类推。

为什么要跳过一些CLIP层?因为神经网络在通过层时会总结信息。层越早,包含的信息就越丰富。

跳过CLIP层对图像可能会产生显著影响。许多动漫模型都是用CLIP Skip为2进行训练的。

在C站上,有些模型会专门标出对应的clip skip是多少,比如这个hellokid2d模型,他的clip skip就是2:

Stable diffusion中的models

我们用这个模型为例,来尝试一下不同clip skip的效果:

Stable diffusion中的models

在web UI中设置clip Skip

正常情况下在文生图或者图生图界面上是看不到clip Skip选项的。 你需要去到 Settings > User Interface > User Interface页面, 在Quicksettings list中添加 CLIP_stop_at_last_layer. 然后点击 Apply Settings 最后 Reload UI.

Stable diffusion中的models

clip skip 滑动按钮就会显示在webUI界面上了。

Stable diffusion中的models

合并两个models

在webUI中合并两个models是非常简单的事情,我们导航到checkpoint Merger页面,选择好对应的两个模型,并调整乘数(M)以调整两个模型的相对权重。将其设置为0.5将以相等的权重合并两个模型。

按下Run后,就会把两个模型合并成一个新的模型。

Stable diffusion中的models

你可以根据自己的爱好来尝试合并不同的模型,通过调整对应的权重,你可以得到意想不到的结果。

Stable Diffusions model的文件格式

在模型下载页面上,您可能会看到几种模型文件格式。

  • 剪枝 (Pruned)
  • 完整 (Full)
  • 仅EMA (EMA-only)
  • FP16
  • FP32
  • .pt
  • .safetensor

这很令人困惑!您应该下载哪一个?

Pruned vs Full vs EMA-only

一些 Stable Diffusion checkpoint模型由两组权重组成:最后训练步骤后的权重和过去几个训练步骤的平均权重,称为 EMA(指数移动平均)。

如果您只对使用模型感兴趣,可以下载 EMA-only。这些是您在使用模型时使用的权重。它们有时被称为 Pruned模型

如果您想要用额外的训练对模型进行微调,那么只需要 Full模型(即由两组权重组成的检查点文件)。

因此,如果您想要用它来生成图像,请下载 PrunedEMA-only。这可以节省一些磁盘空间,哦,不对,是非常多非常多的空间。

Fp16 和 fp32 模型

FP 代表浮点。它是计算机存储十进制数的方式。这里的十进制数是模型权重。FP16 每个数字占用 16 位,称为半精度。FP32 占用 32 位,称为全精度。

深度学习模型(如 Stable Diffusion)的训练数据非常嘈杂。您很少需要全精度模型。额外的精度只是存储噪音!

因此,如果有可用的话,请下载 FP16 模型。它们大约是大小的一半。这可以节省几个 GB 的空间!

Safetensor 模型

原始的 pytorch 模型格式是 .pt。这种格式的缺点是不安全。如果有人在其中打包恶意代码。当您使用模型时,恶意代码就可以在您的计算机上运行。

Safetensors 是 PT 模型格式的改进版本。它执行与存储权重相同的功能,但不会执行任何代码。因此,如果可能的话,请下载 safetensors 版本。如果没有这个版本,那么请从可信赖的来源下载 PT 文件。

其他模型类型

在stable diffusion中,有四种主要类型的文件可以称为“模型”。

Checkpoint 模型 是真正的 Stable Diffusion 模型。它们包含生成图像所需的所有内容。不需要额外的文件。它们很大,通常为 2 - 7 GB。

文本反转(也称为embedding)是定义生成新对象或样式的新关键词的小文件。它们很小,通常为 10 - 100 KB。必须与 Checkpoint 模型一起使用。

LoRA 模型是用于修改样式的 Checkpoint 模型的小补丁文件。它们通常为 10-200 MB。必须与 Checkpoint 模型一起使用。

超网络是添加到 Checkpoint 模型的附加网络模块。它们通常为 5 - 300 MB。必须与 Checkpoint 模型一起使用。

总结

在这篇文章,我介绍了 Stable Diffusion 模型,它们是如何制作的,一些常见的模型以及如何合并它们。欢迎大家自行尝试。

点赞
收藏
评论区
推荐文章
blmius blmius
4年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
美凌格栋栋酱 美凌格栋栋酱
7个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
4年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
FLV文件格式
1.        FLV文件对齐方式FLV文件以大端对齐方式存放多字节整型。如存放数字无符号16位的数字300(0x012C),那么在FLV文件中存放的顺序是:|0x01|0x2C|。如果是无符号32位数字300(0x0000012C),那么在FLV文件中的存放顺序是:|0x00|0x00|0x00|0x01|0x2C。2.  
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
PHP创建多级树型结构
<!lang:php<?php$areaarray(array('id'1,'pid'0,'name''中国'),array('id'5,'pid'0,'name''美国'),array('id'2,'pid'1,'name''吉林'),array('id'4,'pid'2,'n
Easter79 Easter79
3年前
SpringBoot整合Redis乱码原因及解决方案
问题描述:springboot使用springdataredis存储数据时乱码rediskey/value出现\\xAC\\xED\\x00\\x05t\\x00\\x05问题分析:查看RedisTemplate类!(https://oscimg.oschina.net/oscnet/0a85565fa
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
AI伦理委员
AI伦理委员
Lv1
共看明月应垂泪,一夜乡心五处同。
文章
3
粉丝
0
获赞
0