R语言对推特twitter数据进行文本情感分析|附代码数据

焦大
• 阅读 564

原文链接:http://tecdat.cn/?p=4012

最近我们被客户要求撰写关于文本情感分析的研究报告,包括一些图形和统计输出。

我们以R语言抓取的推特数据为例,对数据进行文本挖掘,进一步进行情感分析,从而得到很多有趣的信息

找到推特来源是苹果手机或者安卓手机的样本,清理掉其他来源的样本。

tweets <-tweets_df>%select(id, statusSource, text, created) %>%
extract(statusSource, "source", "Twitter for (.*?)<")>%filter(source %in%c("iPhone", "Android"))

对数据进行可视化计算不同时间对应的推特比例.。

并且对比安卓手机和苹果手机上的推特数量的区别。

R语言对推特twitter数据进行文本情感分析|附代码数据

从对比图中我们可以发现,安卓手机和苹果手机发布推特的时间有显著的差别,安卓手机倾向于在5点到10点之间发布推特,而苹果手机一般在10点到20点左右发布推特。同时我们也可以看到,安卓手机发布推特数量的比例要高于苹果手机。


点击标题查阅往期内容

R语言对推特twitter数据进行文本情感分析|附代码数据

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据

R语言对推特twitter数据进行文本情感分析|附代码数据

左右滑动查看更多

R语言对推特twitter数据进行文本情感分析|附代码数据

01

R语言对推特twitter数据进行文本情感分析|附代码数据

02

R语言对推特twitter数据进行文本情感分析|附代码数据

03

R语言对推特twitter数据进行文本情感分析|附代码数据

04

R语言对推特twitter数据进行文本情感分析|附代码数据

然后查看推特中是否含有引用 ,并且对比不同平台上的数量。

ggplot(aes(source, n, fill = quoted)) +
geom_bar(stat ="identity", position ="dodge") +
labs(x ="", y ="Number of tweets", fill ="")

R语言对推特twitter数据进行文本情感分析|附代码数据

从对比的结果来看,安卓手机没有被引用的比例要明显低于苹果手机。而安卓手机引用的数量要明显大于苹果手机。因此可以认为,苹果手机发的推特内容大多为原创,而安卓手机大多为引用。

然后查看推特中是否有链接或者图片,并且对比不同平台的情况

ggplot(tweet_picture_counts, aes(source, n, fill = picture)) +
geom_bar(stat ="identity", position ="dodge") +
labs(x ="",

R语言对推特twitter数据进行文本情感分析|附代码数据

从上面的对比图中,我们可以看到安卓手机没有图片或者链接的情况要多于苹果,也就是说,使用苹果手机的用户在发推特的时候一般会发布照片或者链接。

同时可以看到安卓平台的用户把推特一般不使用图片或者链接,而苹果手机的用户恰恰相反。

spr <-tweet_picture_counts>%spread(source, n) %>%
mutate_each(funs(. /sum(.)), Android, iPhone)
rr <-spr$iPhone[2] /spr$Android[2]

然后我们对推特中的异常字符进行检测,并且进行删除然后找到推特中关键词,并且按照数量进行排序

reg <- "([^A-Za-zd#@']|'(?![A-Za-zd#@]))
"tweet_words <-tweets>%filter(!str_detect(text, '^"')) %>%m
utate(text =str_replace_all(text, "https://t.co/[A-Za-zd]+|&", "")) %>%
unnest_tokens(word, text, token ="regex", pattern = reg) %>%
filter(!word %in%stop_words$word,str_detect(word, "[a-z]"))


tweet_words %>%count(word, sort =TRUE) %>%head(20) %>%
mutate(word =reorder(word, n)) %>%ggplot(aes(word, n)) +geom_b

R语言对推特twitter数据进行文本情感分析|附代码数据

对数据进行情感分析,并且计算安卓和苹果手机的相对影响比例。

通过特征词情感倾向分别计算不同平台的情感比,并且进行可视化。

R语言对推特twitter数据进行文本情感分析|附代码数据

在统计出不同情感倾向的词的数量之后,绘制他们的置信区间。从上面的图中可以看到,相比于苹果手机,安卓手机的负面情绪最多,其次是厌恶,然后是悲伤。表达积极的情感倾向很少。

然后我们对每个情感类别中出现的关键词的数量进行统计。

android_iphone_ratios %>%inner_join(nrc, by ="word") %>%
filter(!sentiment %in%c("positive", "negative")) %>%
mutate(sentiment =reorder(sentiment, -logratio),word =reorder(word, -logratio)) %>%

R语言对推特twitter数据进行文本情感分析|附代码数据

从结果中我们可以看到,负面词大多出现在安卓手机上,而苹果手机上出现的负面词的数量要远远小于安卓平台上的数量。


R语言对推特twitter数据进行文本情感分析|附代码数据

点击文末 “阅读原文”

获取全文完整代码数据资料。

本文选自《R语言对推特twitter数据进行文本情感分析》。

点击标题查阅往期内容

【数据分享】维基百科Wiki负面有害评论(网络暴力)文本数据多标签分类挖掘可视化
R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究
NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据
Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集
自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据
R语言对NASA元数据进行文本挖掘的主题建模分析
R语言文本挖掘、情感分析和可视化哈利波特小说文本数据
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
用于NLP的Python:使用Keras进行深度学习文本生成
长短期记忆网络LSTM在时间序列预测和文本分类中的应用
用Rapidminer做文本挖掘的应用:情感分析
R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究
R语言对推特twitter数据进行文本情感分析
Python使用神经网络进行简单文本分类
用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
R语言文本挖掘使用tf-idf分析NASA元数据的关键字
R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据
Python使用神经网络进行简单文本分类
R语言自然语言处理(NLP):情感分析新闻文本数据
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
R语言对推特twitter数据进行文本情感分析
R语言中的LDA模型:对文本数据进行主题模型topic modeling分析
R语言文本主题模型之潜在语义分析(LDA:Latent Dirichlet Allocation

点赞
收藏
评论区
推荐文章
blmius blmius
4年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
美凌格栋栋酱 美凌格栋栋酱
7个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
4年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Android蓝牙连接汽车OBD设备
//设备连接public class BluetoothConnect implements Runnable {    private static final UUID CONNECT_UUID  UUID.fromString("0000110100001000800000805F9B34FB");
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这