大数据高并发之-Mysql分表与分库使用场景以及设计方式

网络维
• 阅读 1840

场景:对于大型的互联网应用来说,数据库单表的记录行数可能达到千万级甚至是亿级,并且数据库面临着极高的并发访问。采用Master-Slave复制模式的MySQL架构,
只能够对数据库的读进行扩展,而对数据库的写入操作还是集中在Master上,并且单个Master挂载的Slave也不可能无限制多,Slave的数量受到Master能力和负载的限制。
对于访问极为频繁且数据量巨大的单表来说,我们首先要做的就是减少单表的记录条数,以便减少数据查询所需要的时间,提高数据库的吞吐,这就是所谓的分表!

一. 分表
在分表之前,首先需要选择适当的分表策略,使得数据能够较为均衡地分不到多张表中,并且不影响正常的查询!
对于互联网企业来说,大部分数据都是与用户关联的,因此,用户id是最常用的分表字段。因为大部分查询都需要带上用户id,这样既不影响查询,又能够使数据较为均衡地
分布到各个表中(当然,有的场景也可能会出现冷热数据分布不均衡的情况),如下图:
大数据高并发之-Mysql分表与分库使用场景以及设计方式

假设有一张表记录用户购买信息的订单表order,由于order表记录条数太多,将被拆分成256张表。
拆分的记录根据user_id%256取得对应的表进行存储,前台应用则根据对应的user_id%256,找到对应订单存储的表进行访问。
这样一来,user_id便成为一个必需的查询条件,否则将会由于无法定位数据存储的表而无法对数据进行访问。
注:拆分后表的数量一般为2的n次方,就是上面拆分成256张表的由来!
假设order表结构如下:
大数据高并发之-Mysql分表与分库使用场景以及设计方式

那么分表以后,假设user_id = 257,并且auction_id = 100,需要根据auction_id来查询对应的订单信息,则对应的SQL语句如下:
大数据高并发之-Mysql分表与分库使用场景以及设计方式

其中,order_1是根据257%256计算得出,表示分表之后的第一张order表。
二. 分库
场景:分表能够解决单表数据量过大带来的查询效率下降的问题,但是,却无法给数据库的并发处理能力带来质的提升。面对高并发的读写访问,当数据库master
服务器无法承载写操作压力时,不管如何扩展slave服务器,此时都没有意义了。
因此,我们必须换一种思路,对数据库进行拆分,从而提高数据库写入能力,这就是所谓的分库!
与分表策略相似,分库可以采用通过一个关键字取模的方式,来对数据访问进行路由,如下图所示:
大数据高并发之-Mysql分表与分库使用场景以及设计方式

还是之前的订单表,假设user_id 字段的值为258,将原有的单库分为256个库,那么应用程序对数据库的访问请求将被路由到第二个库(258%256 = 2)。

三. 分库分表
场景:有时数据库可能既面临着高并发访问的压力,又需要面对海量数据的存储问题,这时需要对数据库既采用分表策略,又采用分库策略,以便同时扩展系统的
并发处理能力,以及提升单表的查询性能,这就是所谓的分库分表。
分库分表的策略比前面的仅分库或者仅分表的策略要更为复杂,一种分库分表的路由策略如下:

  1. 中间变量 = user_id % (分库数量 * 每个库的表数量)
  2. 库 = 取整数 (中间变量 / 每个库的表数量)
  3. 表 = 中间变量 % 每个库的表数量

同样采用user_id作为路由字段,首先使用user_id 对库数量*每个库表的数量取模,得到一个中间变量;然后使用中间变量除以每个库表的数量,取整,便得到
对应的库;而中间变量对每个库表的数量取模,即得到对应的表。
分库分表策略详细过程如下:
假设将原来的单库单表order拆分成256个库,每个库包含1024个表,那么按照前面所提到的路由策略,对于user_id=262145 的访问,路由的计算过程如下:

1,中间变量 = 262145 % (256 * 1024) = 1
2,库 = 取整 (1/1024) = 0
3,表 = 1 % 1024 = 1
这就意味着,对于user_id=262145 的订单记录的查询和修改,将被路由到第0个库的第1个order_1表中执行!!!

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
java处理高并发高负载类网站的优化方法
一:高并发高负载类网站关注点之数据库没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是MS(主从)方式进行同步复制,将查询和操作和分别在不同的
Stella981 Stella981
3年前
Redis缓存和MySQL数据一致性方案(转)
需求起因在高并发的业务场景下,数据库大多数情况都是用户并发访问最薄弱的环节。所以,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问MySQL等数据库。!(https://oscimg.oschina.net/oscnet/34e6b909457749e8d213be3b82a76662fc0.png)这个业务场景,主要
Wesley13 Wesley13
3年前
mysql主从同步问题梳理
前言:MySQL主从复制故障机延迟原因有很多,之前详细介绍了Mysql主从复制的原理和部署过程,在mysql同步过程中会出现很多问题,导致数据同步异常。以下梳理了几种主从同步中可能存在的问题:1)slave运行过慢不能与master同步,也就是MySQL数据库主从同步延迟MySQL数据库slave服务器延迟的现象是非常普遍的,MySQ
Wesley13 Wesley13
3年前
Mysql分库分表方案
Mysql分库分表方案1.为什么要分表:当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等
Stella981 Stella981
3年前
PHP连接MySQL数据库的三种方式(mysql、mysqli、pdo)
PHP与MySQL的连接有三种API接口,分别是:PHP的MySQL扩展、PHP的mysqli扩展、PHP数据对象(PDO),下面针对以上三种连接方式做下总结,以备在不同场景下选出最优方案。PHP的MySQL扩展是设计开发允许php应用与MySQL数据库交互的早期扩展。MySQL扩展提供了一个面向过程的接口,并且是针对MySQL4.1.3或者更早版
Wesley13 Wesley13
3年前
MySQL主从复制与读写分离
MySQL主从复制(MasterSlave)与读写分离(MySQLProxy)实践Mysql作为目前世界上使用最广泛的免费数据库,相信所有从事系统运维的工程师都一定接触过。但在实际的生产环境中,由单台Mysql作为独立的数据库是完全不能满足实际需求的,无论是在安全性,高可用性以及高并发等各个方面。因此,一般来说都是通过主从复制(MasterS
Wesley13 Wesley13
3年前
MySQL必须搞定的3大问题:高可用、性能调优、底层原理
MySQL作为互联网中非常热门的数据库,在高并发业务场景下,一条好的MySQL语句能为企业节省大量的运作时间和成本,这也是为何互联网大厂面试官最爱考察数据库底层和性能调优的原因。因此,了解其底层原理和架构的设计非常重要,尤其是MySQL的存储引擎,很大程度上决定了MySQL整体的执行效率和工作性能。网上有不少关于MySQL调
Stella981 Stella981
3年前
Linux Centos下MySQL主从Replication同步配置(一主一从)
MySQL主从复制概念MySQL主从复制是指数据可以从一个MySQL数据库服务器主节点复制到一个或多个从节点。MySQL默认采用异步复制方式,这样从节点不用一直访问主服务器来更新自己的数据,数据的更新可以在远程连接上进行,从节点可以复制主数据库中的所有数据库或者特定的数据库,或者特定的表。 !(https://img2018.cnblogs.c
Wesley13 Wesley13
3年前
MySQL系列(八)
在互联网公司或者一些并发量比较大的项目,虽然有各种项目架构设计、NoSQL、MQ、ES等解决比较高的并发访问,但是对于数据库来说,压力还是太大,这时候即使数据库架构、表结构、索引等都设计的很好了,但是还是扛不住的,主从复制通过读写分离缓解读负载。但是像淘宝这种项目,单一数据库肯定是不行的,为了解决这个问题,就可以使用分库分表PS:这是一篇学习博
Vitess全局唯一ID生成的实现方案 | 京东云技术团队
为了标识一段数据,通常我们会为其指定一个唯一id,比如利用MySQL数据库中的自增主键。但是当数据量非常大时,仅靠数据库的自增主键是远远不够的,并且对于分布式数据库只依赖MySQL的自增id无法满足全局唯一的需求。因此,产生了多种解决方案,如UUID,Sn
Sql优化之回表
前言:MySQL的性能是大家在使用时十分关心的问题,比如在高并发访问时,并且有慢sql存在的情况下,MySQL的性能会明显下降,这会导致数据库响应时间变慢,甚至导致数据库宕机。那么为了避免Mysql性能问题,比较常用的方式创建适当的索引,提升sql语句的执
网络维
网络维
Lv1
我将被带上怎样的轨道走过怎样的路过完怎样的一生
文章
2
粉丝
0
获赞
0