分享5个高效的pandas函数!

Aidan075 等级 747 0 0

分享5个高效的pandas函数!

熟练掌握pandas函数都能帮我们在数据分析过程中节省时间。pandas还有很多让人舒适的用法,这次就为大家介绍5个pandas函数!

本文来源towardsdatascience,作者Soner Yıldırım,由Python大数据分析编译。

1. explode

explode用于将一行数据展开成多行。比如说dataframe中某一行其中一个元素包含多个同类型的数据,若想要展开成多行进行分析,这时候explode就派上用场,而且只需一行代码,非常节省时间。

用法:

DataFrame.explode(self, column: Union[str, Tuple])  

参数作用:

  • column :str或tuple

以下表中第三行、第二列为例,展开[2,3,8]:

# 先创建表  
id = ['a','b','c']  
measurement = [4,6,[2,3,8]]  
day = [1,1,1]  
df1 = pd.DataFrame({'id':id, 'measurement':measurement, 'day':day})  
df1  

分享5个高效的pandas函数!

使用explode轻松将[2,3,8]转换成多行,且行内其他元素保持不变。

df1.explode('measurement').reset_index(drop=True)  

分享5个高效的pandas函数!

2. Nunique

Nunique用于计算行或列上唯一值的数量,即去重后计数。这个函数在分类问题中非常实用,当不知道某字段中有多少类元素时,Nunique能快速生成结果。

用法:

Series.nunique(dropna=True)  
# 或者  
DataFrame.nunique(axis=0, dropna=True)  

参数作用:

  • axis:int型,0代表行,1代表列,默认0;

  • dropna:bool类型,默认为True,计数中不包括NaN;

先创建一个df:

values_1 = np.random.randint(10, size=10)  
values_2 = np.random.randint(10, size=10)  
years = np.arange(2010,2020)  
groups = ['A','A','B','A','B','B','C','A','C','C']  
df = pd.DataFrame({'group':groups, 'year':years, 'value_1':values_1, 'value_2':values_2})  
df  

分享5个高效的pandas函数!

对year列进行唯一值计数:

df.year.nunique()  

输出:10 对整个dataframe的每一个字段进行唯一值计数:

df.nunique()  

分享5个高效的pandas函数!

3. infer_objects

infer_objects用于将object类型列推断为更合适的数据类型。

用法:

# 直接将df或者series推断为合适的数据类型  
DataFrame.infer_objects()  

pandas支持多种数据类型,其中之一是object类型。object类型包括字符串和混合值(数字及非数字)。

object类型比较宽泛,如果可以确定为具体数据类型,则不建议用object。

df = pd.DataFrame({"A": ["a", 1, 2, 3]})  
df = df.iloc[1:]  
df  

分享5个高效的pandas函数!

df.dtypes  

分享5个高效的pandas函数!

使用infer_objects方法将object推断为int类型:

df.infer_objects().dtypes  

分享5个高效的pandas函数!

4. memory_usage

memory_usage用于计算dataframe每一列的字节存储大小,这对于大数据表非常有用。

用法:

DataFrame.memory_usage(index=True, deep=False)  

参数解释:index:指定是否返回df中索引字节大小,默认为True,返回的第一行即是索引的内存使用情况;deep:如果为True,则通过查询object类型进行系统级内存消耗来深入地检查数据,并将其包括在返回值中。

首先创建一个df,共2列,1000000行。

df_large = pd.DataFrame({'A': np.random.randn(1000000),  
                    'B': np.random.randint(100, size=1000000)})  
df_large.shape  

分享5个高效的pandas函数!

返回每一列的占用字节大小:

df_large.memory_usage()  

分享5个高效的pandas函数!

第一行是索引index的内存情况,其余是各列的内存情况。

5. replace

顾名思义,replace是用来替换df中的值,赋以新的值。

用法:

DataFrame.replace(to_replace=None, value=None, inplace=False, limit=None, regex=False, method='pad')  

参数解释:

  • to_replace:被替换的值

  • value:替换后的值

  • inplace:是否要改变原数据,False是不改变,True是改变,默认是False

  • limit:控制填充次数

  • regex:是否使用正则,False是不使用,True是使用,默认是False

  • method:填充方式,pad,ffill,bfill分别是向前、向前、向后填充

创建一个df:

values_1 = np.random.randint(10, size=10)  
values_2 = np.random.randint(10, size=10)  
years = np.arange(2010,2020)  
groups = ['A','A','B','A','B','B','C','A','C','C']  
df = pd.DataFrame({'group':groups, 'year':years, 'value_1':values_1, 'value_2':values_2})  
df  

分享5个高效的pandas函数!

将A全部替换为D:

df.replace('A','D')  

将B替换为E,C替换为F:

df.replace({'B':'E','C':'F'})  

分享5个高效的pandas函数!

分享5个高效的pandas函数!)分享5个高效的pandas函数!

本文转转自微信公众号凹凸数据原创https://mp.weixin.qq.com/s/jJ2CvevISHcetH3UqFgdag,可扫描二维码进行关注: 分享5个高效的pandas函数! 如有侵权,请联系删除。

收藏
评论区

相关推荐

Pandas案例精进 | 结构化数据非等值范围查找 ③
(https://imghelloworld.osscnbeijing.aliyuncs.com/e6c2856ad5883bc1c88c2f0737ef232e.png) 大家好,我是小五🐶 欢迎来到👉「Pandas案例精进」专栏(https://mp.weixin.qq.com/mp/appmsgalbum?__bizMz
Pandas案例精进 | 结构化数据非等值范围查找 ①
(https://imghelloworld.osscnbeijing.aliyuncs.com/dac5483b3517ff8a0968fc75987d12ad.png) 大家好,我是小五🐶 欢迎来到「Pandas案例精进(https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzU5Nzg5
Pandas案例精进 | 结构化数据非等值范围查找 ②
(https://imghelloworld.osscnbeijing.aliyuncs.com/4971fbce1ecb759123ecc666f3af2c31.png) 大家好,我是小五🐶 欢迎来到「Pandas案例精进」专栏(https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzU5Nzg
Pandas案例精进 | 续集:自动分割汇总表写入到子表
(https://imghelloworld.osscnbeijing.aliyuncs.com/0d046e77f6ee65ce132919966585165a.png) 大家好! 欢迎来到「Pandas案例精进」专栏(https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzU5Nzg5OD
Pandas案例精进 | 自动分割汇总表写入到子表
(https://imghelloworld.osscnbeijing.aliyuncs.com/f5b70d401be96176067dfe8304143ead.png) 大家好! 欢迎来到「Pandas案例精进」专栏 今天分享的是一个之前的案例,里面涉及的方法可能有些过时,但处理思想仍有较高的参考价值。 Pandas案例需求
Pandas统计分析基础(基础篇,新手必看)
Pandas统计分析基础Pandas(Python Data Analysis Library)是基于NumPy的数据分析模块,它提供了大量标准数据模型和高效操作大型数据集所需的工具,可以说Pandas是使得Pyth
Python数据分析实战(2)使用Pandas进行数据分析
一、Pandas的使用 1.Pandas介绍Pandas的主要应用包括: 数据读取 数据集成 透视表 数据聚合与分组运算 分段统计 数据可视化Pandas的使用很灵活,最重要的两个数据类型是DataFrame和Series。对DataFrame最直观的理解是把它当成一个Excel表格文件,如下:索引是从0开始的,也
分享5个高效的pandas函数!
熟练掌握pandas函数都能帮我们在数据分析过程中节省时间。pandas还有很多让人舒适的用法,这次就为大家介绍5个pandas函数!本文来源towardsdatascience,作者Soner Yıldırım,由Python大数据分析编译。1\. explodeexplode用于将一行数据展开成多行。比如说dataframe中某一行其中一个元素包含多个同
天秀!一张图就能彻底搞定Pandas!
大家好,在三月初,我曾给大家分享过一份Matplotlib绘图小抄,详见昨天在面向GitHub编程时,无意发现了Pandas官方竟提供了同款小抄,项目地址如下https://github.com/pandasdev/pandas/blob/master/doc/cheatsheet/PandasCheatSheet.pdf 可以看到这份小抄提供了PPT和P
Pandas专家总结:指定样式保存excel数据的 “N种” 姿势!
作者:小小明 简介:Pandas数据处理专家,10余年编码经验,至今已帮助过百名以上数据从业人员解决工作实际遇到的问题,其中数据处理和办公自动化问题涉及的行业包括会计、审计、HR、气象工作人员、教师、律师、运营,以及各行业的数据分析师和专做数据分析案例的公众号号主。 若你在数据处理的问题上遇到什么困难,欢迎与我交流。目录 准备数据
14个pandas神操作,手把手教你写代码
「数仓宝贝库」,带你学数据!导读: Pandas是Python数据分析的利器,也是各种数据建模的标准工具。本文带大家入门Pandas,将介绍Python语言、Python数据生态和Pandas的一些基本功能。 在Python语言应用生态中,数据科学领域近年来十分热门。作为数据科学中一个非常基础的库,Pandas受到了广泛关注。Pandas可以将现实中来
14个pandas神操作,手把手教你写代码
「数仓宝贝库」,带你学数据!导读:Pandas是Python数据分析的利器,也是各种数据建模的标准工具。本文带大家入门Pandas,将介绍Python语言、Python数据生态和Pandas的一些基本功能。 在Python语言应用生态中,数据科学领域近年来十分热门。作为数据科学中一个非常基础的库,Pandas受到了广泛关注。Pandas可以将现实中来源
Python 数据分析包:pandas 基础
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下: lang:pytho
Python在网页上展示表格的简单方法
![](https://oscimg.oschina.net/oscnet/22596eed-3e2a-4708-acc1-bc8a22f8588d.jpg) * Python是当今最热门的编程语言 * Pandas是Python下最热门的数据处理与数据分析的库 * Flask是Python下方便简洁的Web开发框架
Python实现数据分析(四)
Pandas ------ **关键词: 数据分析库** **官网**:[https://pandas.pydata.org/](https://www.oschina.net/action/GoToLink?url=https%3A%2F%2Fpandas.pydata.org%2F) **介绍(选自-百度百科)**: pandas 是基于NumP