Java运行状态分析2:线程状态及堆栈信息
基本概念
出现内存泄漏或者运行缓慢场景,有时候无法直接从业务日志看出问题时候,需要分析jvm内存和线程堆栈
线程堆栈信息主要记录jvm线程在某时刻线程执行情况,分析线程状态可以跟踪到程序出问题的地方
内存堆栈信息主要记录jvm堆中在某时刻对象使用情况,主要用于跟踪是哪个对象占用了太多的空间,从而跟踪导致内存泄漏的地方
跟踪线程信息
查看当前线程数量
actuator
1.x
http://host:port/metrics/threads //当前进程的线程数
http://host:port/metrics/threads.daemon  //当前进程后台驻留线程数
http://host:port/metrics/threads.peak  //当前进程线程数峰值
2.x
http://host:port/actuator/metrics/jvm.threads.daemon  //当前进程后台驻留线程数
http://host:port/actuator/metrics/jvm.threads.live  //当前进程的线程数
http://host:port/actuator/metrics/jvm.threads.peak  //当前进程线程数峰值
hystrix 线程状态
如果接入了turbine可以直接通过turbine查看整个集群状态

当集群较大的时候,单纯想看hystrix线程池状态,可以单独从hystrix监控统计类里面获取
http://host:port/sys/hystrix/threads
源码如下:
import com.alibaba.fastjson.JSON;
import com.netflix.hystrix.HystrixThreadPoolMetrics;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.scheduling.annotation.EnableScheduling;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
import java.util.List;
import java.util.stream.Collectors;
/**
 * @author yugj
 * @date 19/5/5 22:17.
 */
@RestController
@RequestMapping(path = "/sys/hystrix")
@ManagedResource(description = "hystrix Endpoint")
@EnableScheduling
public class HystrixThreadPoolEndpoint {
    private boolean showStats = false;
    private static final Logger log = LoggerFactory.getLogger(HystrixThreadPoolEndpoint.class);
    @GetMapping(value = "/threads")
    public List threadStats() {
        return HystrixThreadPoolMetrics.getInstances().stream().map((m) -> {
            final HystrixThreadStats stats = new HystrixThreadStats();
            stats.poolName = m.getThreadPoolKey().name();
            stats.cumulativeExecuted = m.getCumulativeCountThreadsExecuted();
            stats.currentActiveCount = m.getCurrentActiveCount().intValue();
            stats.currentCompletedCount = m.getCurrentCompletedTaskCount().intValue();
            stats.currentCorePoolSize = m.getCurrentCorePoolSize().intValue();
            stats.currentLargestPoolSize = m.getCurrentLargestPoolSize().intValue();
            stats.currentMaxPoolSize = m.getCurrentMaximumPoolSize().intValue();
            stats.currentPoolSize = m.getCurrentPoolSize().intValue();
            stats.currentQueueSize = m.getCurrentQueueSize().intValue();
            stats.currentTaskCount = m.getCurrentTaskCount().intValue();
            return stats;
        }).collect(Collectors.toList());
    }
    @GetMapping(value = "/setShowStats")
    public String setShowStats(Boolean showStats) {
        if (showStats != null) {
            this.showStats = showStats;
        }
        return "this.show stats:" + this.showStats;
    }
    @Scheduled(fixedRate = 5000)
    public void showStats() {
        if (showStats) {
            List<HystrixThreadPoolEndpoint.HystrixThreadStats> statsList = threadStats();
            log.info("thread stats :{}", JSON.toJSONString(statsList));
        }
    }
    class HystrixThreadStats {
        private String poolName;
        private Long cumulativeExecuted;
        private Integer currentActiveCount;
        private Integer currentCompletedCount;
        private Integer currentCorePoolSize;
        private Integer currentLargestPoolSize;
        private Integer currentMaxPoolSize;
        private Integer currentPoolSize;
        private Integer currentQueueSize;
        private Integer currentTaskCount;
        public String getPoolName() {
            return poolName;
        }
        public void setPoolName(String poolName) {
            this.poolName = poolName;
        }
        public Long getCumulativeExecuted() {
            return cumulativeExecuted;
        }
        public void setCumulativeExecuted(Long cumulativeExecuted) {
            this.cumulativeExecuted = cumulativeExecuted;
        }
        public Integer getCurrentActiveCount() {
            return currentActiveCount;
        }
        public void setCurrentActiveCount(Integer currentActiveCount) {
            this.currentActiveCount = currentActiveCount;
        }
        public Integer getCurrentCompletedCount() {
            return currentCompletedCount;
        }
        public void setCurrentCompletedCount(Integer currentCompletedCount) {
            this.currentCompletedCount = currentCompletedCount;
        }
        public Integer getCurrentCorePoolSize() {
            return currentCorePoolSize;
        }
        public void setCurrentCorePoolSize(Integer currentCorePoolSize) {
            this.currentCorePoolSize = currentCorePoolSize;
        }
        public Integer getCurrentLargestPoolSize() {
            return currentLargestPoolSize;
        }
        public void setCurrentLargestPoolSize(Integer currentLargestPoolSize) {
            this.currentLargestPoolSize = currentLargestPoolSize;
        }
        public Integer getCurrentMaxPoolSize() {
            return currentMaxPoolSize;
        }
        public void setCurrentMaxPoolSize(Integer currentMaxPoolSize) {
            this.currentMaxPoolSize = currentMaxPoolSize;
        }
        public Integer getCurrentPoolSize() {
            return currentPoolSize;
        }
        public void setCurrentPoolSize(Integer currentPoolSize) {
            this.currentPoolSize = currentPoolSize;
        }
        public Integer getCurrentQueueSize() {
            return currentQueueSize;
        }
        public void setCurrentQueueSize(Integer currentQueueSize) {
            this.currentQueueSize = currentQueueSize;
        }
        public Integer getCurrentTaskCount() {
            return currentTaskCount;
        }
        public void setCurrentTaskCount(Integer currentTaskCount) {
            this.currentTaskCount = currentTaskCount;
        }
    }
}
linux
ps huH p {pid}|wc -l
jstack生成线程堆栈
当服务cup飙升或者出问题需要从主机层面定位时候,使用top -c 命令查看对应哪个进程占用了过高资源

找到资源占用高的进程
明确需要定位的进程通过如下命令找到对应的进程id
ps aux|grep {application alias}
可以通过如下命令定位具体高load线程:
查询进程具体哪个线程占用高load
top -Hp {进程pid}
thread id为十六进制格式转十六进制值
printf %x {线程pid}
指定特定行数堆栈信息
jstack {进程id}|grep -A 200 {线程id}
接下来通过jstack导出对应的线程堆栈
jstack 对应参数如下
服务器线程相对较多,文件大小较大,一般不会考虑在服务器看,另外这样查也会导致忽略了一些统计信息
通过如下命令导出文件,下载到本地查
jstack -l {pid} >> {dump-file-path}
docker环境涉及一些权限,需要进入docker执行,docker里面进程id根据实际情况,一般会联系运维操作
如何查看 分析dump文件,请看下文