跟我读论文丨ACL2021 NER BERT化隐马尔可夫模型用于多源弱监督命名实体识别

哈希涟漪
• 阅读 3281
摘要:本文是对ACL2021 NER BERT化隐马尔可夫模型用于多源弱监督命名实体识别这一论文工作进行初步解读。

本文分享自华为云社区《ACL2021 NER | BERT化隐马尔可夫模型用于多源弱监督命名实体识别》,作者: JuTzungKuei 。

论文:Li Yinghao, Shetty Pranav, Liu Lucas, Zhang Chao, Song Le. BERTifying the Hidden Markov Model for Multi-Source Weakly Supervised Named Entity Recognition[A]. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) [C]. Online: Association for Computational Linguistics, 2021, 6178–6190.

链接:https://aclanthology.org/2021...

代码:https://github.com/Yinghao-Li...
跟我读论文丨ACL2021 NER BERT化隐马尔可夫模型用于多源弱监督命名实体识别

0、摘要

  • 研究内容:使用多个弱监督数据的噪音标签学习NER
  • 噪音数据:不全、不准、矛盾
  • 提出一个条件隐马尔可夫模型(CHMM:conditional hidden Markov model)

    • 利用BERT的上下文表示能力,增强了经典的HMM模型
    • 从BERT嵌入中学习词的转移和发射概率,推断潜在的真标签
  • 用交替训练方法(CHMM-ALT)进一步完善CHMM

    • 用CHMM推导出的标签对BERT-NER模型进行微调
    • BERT-NER的输出作为额外的弱源来训练CHMM
  • 四份数据集上达到SOTA

    1、介绍

  • NER是许多下游信息抽取任务的基础任务:事件抽取、关系抽取、问答

    • 有监督、需要大量标注数据
    • 许多领域有知识源:知识库、领域词典、标注规则
    • 可以用来匹配语料库,从多角度,快速生成大规模的噪声训练数据
  • 远程监督NER:只使用知识库作为弱监督,未使用多源标注的互补信息
  • 现有利用HMM方法,有局限性:one-hot词向量 或 不建模
  • 贡献:

    • CHMM:聚合多源弱标签
    • 交替训练方法CHMM-ALT:轮流训练CHMM和BERT-NER,利用彼此的输出进行多回路,以优化多源弱监督NER性能
    • 四份基准数据集获得SOTA

      2、方法

  • CHMM-ALT 训练两个模型:多源标签聚合器CHMM和BERT-NER 模型,轮流作为彼此的输出

    • 阶段I:CHMM根据K个源x_{1:K}^{(1:T)}x1:K(1:T)​,生成一个去噪标签y^{*(1:T)}y∗(1:T),微调BERT-NER模型输出\widetilde{y}^{(1:T)}y​(1:T),作为额外的标注源,添加到原始弱标签集合x_{1:K+1}^{(1:T)} = {x_{1:K}^{(1:T)} , \widetilde{y}^{(1:T)}}x1:K+1(1:T)​={x1:K(1:T)​,y​(1:T)}
    • 阶段II:CHMM和BERT-NER在几轮循环中互相改进,每轮循环,先训练CHMM,后微调BERT-NER,更新前者的输入
    • CHMM 提高Precision,BERT-NER提高Recall
      跟我读论文丨ACL2021 NER BERT化隐马尔可夫模型用于多源弱监督命名实体识别
  • 隐马尔可夫模型

    • 不细解
      跟我读论文丨ACL2021 NER BERT化隐马尔可夫模型用于多源弱监督命名实体识别

3、结果

跟我读论文丨ACL2021 NER BERT化隐马尔可夫模型用于多源弱监督命名实体识别

号外号外:想了解更多的AI技术干货,欢迎上华为云的AI专区,目前有AI编程Python等六大实战营供大家免费学习。

点击关注,第一时间了解华为云新鲜技术~

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
美凌格栋栋酱 美凌格栋栋酱
6个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
深度学习技术开发与应用
关键点1.强化学习的发展历程2.马尔可夫决策过程3.动态规划4.无模型预测学习5.无模型控制学习6.价值函数逼近7.策略梯度方法8.深度强化学习DQN算法系列9.深度策略梯度DDPG,PPO等第一天9:0012:0014:0017:00一、强化学习概述1.强化学习介绍2.强化学习与其它机器学习的不同3.强化学习发展历史4.强化学习典
Peter20 Peter20
4年前
mysql中like用法
like的通配符有两种%(百分号):代表零个、一个或者多个字符。\(下划线):代表一个数字或者字符。1\.name以"李"开头wherenamelike'李%'2\.name中包含"云",“云”可以在任何位置wherenamelike'%云%'3\.第二个和第三个字符是0的值wheresalarylike'\00%'4\
Stella981 Stella981
3年前
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
准备工作,先准备python环境,下载BERT语言模型Python3.6环境需要安装kashgariBackendpypiversiondescTensorFlow2.xpipinstall‘kashgari2.0.0’comingsoonTensorFlow1.14pipins
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
直播预告 | 大模型时代 “应用变了”:看大模型如何跑进零售电商应用
走进零售电商,大模型能做什么?今年11.11,应用大模型带来成效显著今天下午2:00,京东云视频号准时直播看京东零售如何破题新解法,大小模型协同大模型将走向多模态,走向具身智能
一种融合指代消解序列标注方法在中文人名识别上的应用(上)
技术领域自然语言处理领域。应用场景:适用于自然语言处理领域,通过命名实体识别(NamedEntityRecognition,NER),准确识别实体。依托自然语言处理领域,基于人民日报数据及构造的舆情公告数据,提出一种融合指代消解的序列标注方法来改进人名识别
知识图谱自动化构建的探索与挑战
知识图谱自动化构建的探索与挑战|论文分享达观数据知识图谱的自动化构建是知识图谱中具有极强挑战性且巨大应用价值的技术方向。就实体抽取技术,达观数据副总裁、上海市人工智能技术标准委员会委员王文广提到“狭义的实体抽取,即命名实体识别(NER)技术发展至今已较为成熟,能够很好地抽取出人名、地名、机构名等少数类型的实体。但在知识图谱实际应用中,则需要抽取出各式各样各不