SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

单子春
• 阅读 1185
SaccadeNet基于中心点特征进行初步的目标定位,然后利用初步预测框的角点特征以及中心点特征进行预测框的精调,整体思想类似于two-stage目标检测算法,将第二阶段的预测框精调用的区域特征转化为点特征。SaccadeNet在精度和速度上都可圈可点,整体思想十分不错

来源:晓飞的算法工程笔记 公众号

论文: SaccadeNet: A Fast and Accurate Object Detector

SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

Introduction


  在神经学中,人类在定位目标时并非固定地看着场景,而是四处寻找富含信息的区域来帮助进行目标的定位。受此机制的启发,论文提出了SaccadeNet,能够高效地关注信息丰富的目标关键点,从粗粒度到细粒度进行目标定位。

SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

  SaccadeNet的结构如图2所示,首先初步预测目标的中心位置以及角点位置,然后利用四个角点位置以及中心点位置的特征进行回归优化,SaccadeNet包含四个模块:

  • Center Attentive Module(Center-Attn),预测目标的中心位置以及类别。
  • Attention Transitive Module(Attn-Trans),初步预测每个中心位置对应的角点位置。
  • Aggregation Attentive Module (Aggregation-Attn),利用中心位置以及角点位置的特征进行预测框的优化。
  • Corner Attentive Module(Corner-Attn),用于增强主干网络的目标边界特征。

  SaccadeNet的整体思想十分不错,有点类似于two-stage的目标检测的方案,将第二阶段的预测框回归从区域特征转化成了点特征。

Center Attentive Module


  Center-Attn模块包含两个简单的卷积层,将主干网络输出的特征图转化为中心点热图,热图可用于预测图片中所有目标的中心位置及其类别。该模块的GT跟CornerNet的设置一样,使用高斯核$e^{\frac{||X-X_k||^2}{2{\sigma}^2}}$将GT位置进行散射,$\sigma$为半径的1/3,半径由目标的大小决定,保证半径内的点能够产生IOU至少为0.3的预测框。另外,该模块的损失函数结合了focal loss:

SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

  $p_{i,j}$为热图上位置$(i,j)$的分数,$y_{i,j}$为对应的GT值。

Attention Transitive Module


  Attn-Trans模块输出大小为$w_f\times h_f\times 2$,预测每个位置对应的预测框的宽和高,然后根据其中心点位置$(i,j)$计算其对应角点位置$(i-w_{i,j}/2, j-h_{i,j}/2)$,$(i-w_{i,j}/2, j+h_{i,j}/2)$,$(i+w_{i,j}/2, j-h_{i,j}/2)$,$(i+w_{i,j}/2, j+h_{i,j}/2)$,使用L1回归损失进行训练。基于Center-Attn模块和Attn-Trans模块,SaccadeNet能够初步预测目标的检测结果。此外,论文的源码提供在此模块额外预测中心点的偏移值,针对下采样造成的不对齐问题,该偏移值同样使用L1回归损失进行训练,这个是默认开启的。

Aggregation Attentive Module


  Aggregation-Attn是一个轻量级模块,用于对预测框进行精调,输出更精准的预测框。Aggregation-Attn模块从Attn-Trans模块和Center-Attn模块中获取目标的角点和中心点,并且从主干网络输出的特征图中,使用双线性插值采样对应位置的特征,最后回归宽和高的修正值,整个模块使用L1损失进行训练。

Corner Attentive Module in Training


  为了提取富含信息的角点特征,论文在训练时加入了额外的Corner-Attn分支,将主干网络特征转化输出为四通道热图,分别对应目标的四个角点。同样地,该分支基于focal loss和高斯热图进行训练,该分支是类不可知的。此模块可迭代进行多次精调,类似Cascade R-CNN那样,论文在实验部分也进行了对比。

Relation to existing methods


  目前的基于关键点的目标检测方法可分为edge-keypoint-based detectors和center-keypoint-based detectors,SaccadeNet综合了两类方法的优点的存在。
  Edge-keypoint-based detectors通常先检测角点或极点,然后通过组合方法对关键点组合进行目标的定位,但这类算法通常不能获取目标的全局信息:a) 角点特征本身就包含较少的目标信息,需要额外增加中心特征进行特征加强。 b) 角点通常位于背景像素上,相对于其它关键点包含更少的信息。尽管SaccadeNet也利用了角点进行目标预测,但SaccadeNet直接从中心关键点进行目标预测,这样能够获取目标的全局信息,并且避免了耗时的关键点组合。

SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

  Center-keypoint-based detectors通过中心关键点进行目标预测,输出中心点热图并直接回归边界。但中心点通常离目标边界较远,可能会难以预测准确的目标边界,特别对于大目标而言。另外,角点关键点是离边界最近的,包含很多局部的准确信息,缺乏角点信息可能会对预测结果不利,而SaccadeNet恰好填补了这个缺陷,进行更准确的边界预测。

Experiments


SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

  与SOTA目标检测算法进行对比。

SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

  Attn-Trans模块和Aggregation-Attn模块的对比实验。

SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

  Corner-Attn模块迭代次数对比。

Conclusion


  SaccadeNet基于中心点特征进行初步的目标定位,然后利用初步预测框的角点特征以及中心点特征进行预测框的精调,整体思想类似于two-stage目标检测算法,第二阶段的预测框精调用的区域特征转化为点特征。SaccadeNet在精度和速度上都可圈可点,整体思想十分不错。



如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

SaccadeNet:使用角点特征进行two-stage预测框精调 | CVPR 2020

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
深度学习技术开发与应用
关键点1.强化学习的发展历程2.马尔可夫决策过程3.动态规划4.无模型预测学习5.无模型控制学习6.价值函数逼近7.策略梯度方法8.深度强化学习DQN算法系列9.深度策略梯度DDPG,PPO等第一天9:0012:0014:0017:00一、强化学习概述1.强化学习介绍2.强化学习与其它机器学习的不同3.强化学习发展历史4.强化学习典
Jacquelyn38 Jacquelyn38
4年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
美凌格栋栋酱 美凌格栋栋酱
5个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
单子春
单子春
Lv1
你要是敢视我为游戏,我就敢开挂虐死你。
文章
5
粉丝
0
获赞
0