高斯朴素贝叶斯分类的原理解释和手写代码实现

混沌映射
• 阅读 1910

Gaussian Naive Bayes (GNB) 是一种基于概率方法和高斯分布的机器学习的分类技术。朴素贝叶斯假设每个参数(也称为特征或预测变量)具有预测输出变量的独立能力。所有参数的预测组合是最终预测,它返回因变量被分类到每个组中的概率,最后的分类被分配给概率较高的分组(类)。

什么是高斯分布?

高斯分布也称为正态分布,是描述自然界中连续随机变量的统计分布的统计模型。正态分布由其钟形曲线定义, 正态分布中两个最重要的特征是均值 (μ) 和标准差 (σ)。平均值是分布的平均值,标准差是分布在平均值周围的“宽度”。

重要的是要知道正态分布的变量 (X) 从 -∞ < X < +∞ 连续分布(连续变量),并且模型曲线下的总面积为 1。

多分类的高斯朴素贝叶斯

导入必要的库:

from random import random
from random import randint
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import statistics
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import confusion_matrix
from mlxtend.plotting import plot_decision_regions

现在创建一个预测变量呈正态分布的数据集。

#Creating values for FeNO with 3 classes:
FeNO_0 = np.random.normal(20, 19, 200)
FeNO_1 = np.random.normal(40, 20, 200)
FeNO_2 = np.random.normal(60, 20, 200)

#Creating values for FEV1 with 3 classes:
FEV1_0 = np.random.normal(4.65, 1, 200)
FEV1_1 = np.random.normal(3.75, 1.2, 200)
FEV1_2 = np.random.normal(2.85, 1.2, 200)

#Creating values for Broncho Dilation with 3 classes:
BD_0 = np.random.normal(150,49, 200)
BD_1 = np.random.normal(201,50, 200)
BD_2 = np.random.normal(251, 50, 200)

#Creating labels variable with three classes:(2)disease (1)possible disease (0)no disease:
not_asthma = np.zeros((200,), dtype=int)
poss_asthma = np.ones((200,), dtype=int)
asthma = np.full((200,), 2, dtype=int)

#Concatenate classes into one variable:
FeNO = np.concatenate([FeNO_0, FeNO_1, FeNO_2])
FEV1 = np.concatenate([FEV1_0, FEV1_1, FEV1_2])
BD = np.concatenate([BD_0, BD_1, BD_2])
dx = np.concatenate([not_asthma, poss_asthma, asthma])

#Create DataFrame:
df = pd.DataFrame()

#Add variables to DataFrame:
df['FeNO'] = FeNO.tolist()
df['FEV1'] = FEV1.tolist()
df['BD'] = BD.tolist()
df['dx'] = dx.tolist()

#Check database:
df

高斯朴素贝叶斯分类的原理解释和手写代码实现

我们的df有 600 行和 4 列。现在我们可以通过可视化检查变量的分布:

fig, axs = plt.subplots(2, 3, figsize=(14, 7))

sns.kdeplot(df['FEV1'], shade=True, color="b", ax=axs[0, 0])
sns.kdeplot(df['FeNO'], shade=True, color="b", ax=axs[0, 1])
sns.kdeplot(df['BD'], shade=True, color="b", ax=axs[0, 2])
sns.distplot( a=df["FEV1"], hist=True, kde=True, rug=False, ax=axs[1, 0])
sns.distplot( a=df["FeNO"], hist=True, kde=True, rug=False, ax=axs[1, 1])
sns.distplot( a=df["BD"], hist=True, kde=True, rug=False, ax=axs[1, 2])

plt.show()

高斯朴素贝叶斯分类的原理解释和手写代码实现

通过人肉的检查,数据似乎接近高斯分布。还可以使用 qq-plots仔细检查:

from statsmodels.graphics.gofplots import qqplot
from matplotlib import pyplot

#q-q plot:
fig, axs = pyplot.subplots(1, 3, figsize=(15, 5))
qqplot(df['FEV1'], line='s', ax=axs[0])
qqplot(df['FeNO'], line='s', ax=axs[1])
qqplot(df['BD'], line='s', ax=axs[2])
pyplot.show()

高斯朴素贝叶斯分类的原理解释和手写代码实现

虽然不是完美的正态分布,但已经很接近了。下面查看的数据集和变量之间的相关性:

#Exploring dataset:
sns.pairplot(df, kind="scatter", hue="dx")
plt.show()

高斯朴素贝叶斯分类的原理解释和手写代码实现

可以使用框线图检查这三组的分布,看看哪些特征可以更好的区分出类别

# plotting both distibutions on the same figure
fig, axs = plt.subplots(2, 3, figsize=(14, 7))

fig = sns.kdeplot(df['FEV1'], hue= df['dx'], shade=True, color="r", ax=axs[0, 0])
fig = sns.kdeplot(df['FeNO'], hue= df['dx'], shade=True, color="r", ax=axs[0, 1])
fig = sns.kdeplot(df['BD'], hue= df['dx'], shade=True, color="r", ax=axs[0, 2])
sns.boxplot(x=df["dx"], y=df["FEV1"], palette = 'magma', ax=axs[1, 0])
sns.boxplot(x=df["dx"], y=df["FeNO"], palette = 'magma',ax=axs[1, 1])
sns.boxplot(x=df["dx"], y=df["BD"], palette = 'magma',ax=axs[1, 2])

plt.show()

高斯朴素贝叶斯分类的原理解释和手写代码实现

手写朴素贝叶斯分类

手写代码并不是让我们重复的制造轮子,而是通过自己编写代码对算法更好的理解。在进行贝叶斯分类之前,先要了解正态分布。

正态分布的数学公式定义了一个观测值出现在某个群体中的概率:

高斯朴素贝叶斯分类的原理解释和手写代码实现

我们可以创建一个函数来计算这个概率:

def normal_dist(x , mean , sd):
      prob_density = (1/sd*np.sqrt(2*np.pi)) * np.exp(-0.5*((x-mean)/sd)**2)
      return prob_density

知道正态分布公式,就可以计算该样本在三个分组(分类)概率。首先,需要计算所有预测特征和组的均值和标准差:

#Group 0:
group_0 = df[df['dx'] == 0]print('Mean FEV1 group 0: ', statistics.mean(group_0['FEV1']))
print('SD FEV1 group 0: ', statistics.stdev(group_0['FEV1']))
print('Mean FeNO group 0: ', statistics.mean(group_0['FeNO']))
print('SD FeNO group 0: ', statistics.stdev(group_0['FeNO']))
print('Mean BD group 0: ', statistics.mean(group_0['BD']))
print('SD BD group 0: ', statistics.stdev(group_0['BD']))

#Group 1:
group_1 = df[df['dx'] == 1]
print('Mean FEV1 group 1: ', statistics.mean(group_1['FEV1']))
print('SD FEV1 group 1: ', statistics.stdev(group_1['FEV1']))
print('Mean FeNO group 1: ', statistics.mean(group_1['FeNO']))
print('SD FeNO group 1: ', statistics.stdev(group_1['FeNO']))
print('Mean BD group 1: ', statistics.mean(group_1['BD']))
print('SD BD group 1: ', statistics.stdev(group_1['BD']))

#Group 2:
group_2 = df[df['dx'] == 2]
print('Mean FEV1 group 2: ', statistics.mean(group_2['FEV1']))
print('SD FEV1 group 2: ', statistics.stdev(group_2['FEV1']))
print('Mean FeNO group 2: ', statistics.mean(group_2['FeNO']))
print('SD FeNO group 2: ', statistics.stdev(group_2['FeNO']))
print('Mean BD group 2: ', statistics.mean(group_2['BD']))
print('SD BD group 2: ', statistics.stdev(group_2['BD']))

高斯朴素贝叶斯分类的原理解释和手写代码实现

现在,使用一个随机的样本进行测试:FEV1 = 2.75FeNO = 27BD = 125

#Probability for:
#FEV1 = 2.75
#FeNO = 27
#BD = 125

#We have the same number of observations, so the general probability is: 0.33
Prob_geral = round(0.333, 3)

#Prob FEV1:
Prob_FEV1_0 = round(normal_dist(2.75, 4.70, 1.08), 10)
print('Prob FEV1 0: ', Prob_FEV1_0)
Prob_FEV1_1 = round(normal_dist(2.75, 3.70, 1.13), 10)
print('Prob FEV1 1: ', Prob_FEV1_1)
Prob_FEV1_2 = round(normal_dist(2.75, 3.01, 1.22), 10)
print('Prob FEV1 2: ', Prob_FEV1_2)

#Prob FeNO:
Prob_FeNO_0 = round(normal_dist(27, 19.71, 19.29), 10)
print('Prob FeNO 0: ', Prob_FeNO_0)
Prob_FeNO_1 = round(normal_dist(27, 42.34, 19.85), 10)
print('Prob FeNO 1: ', Prob_FeNO_1)
Prob_FeNO_2 = round(normal_dist(27, 61.78, 21.39), 10)
print('Prob FeNO 2: ', Prob_FeNO_2)

#Prob BD:
Prob_BD_0 = round(normal_dist(125, 152.59, 50.33), 10)
print('Prob BD 0: ', Prob_BD_0)
Prob_BD_1 = round(normal_dist(125, 199.14, 50.81), 10)
print('Prob BD 1: ', Prob_BD_1)
Prob_BD_2 = round(normal_dist(125, 256.13, 47.04), 10)
print('Prob BD 2: ', Prob_BD_2)

#Compute probability:
Prob_group_0 = Prob_geral*Prob_FEV1_0*Prob_FeNO_0*Prob_BD_0
print('Prob group 0: ', Prob_group_0)

Prob_group_1 = Prob_geral*Prob_FEV1_1*Prob_FeNO_1*Prob_BD_1
print('Prob group 1: ', Prob_group_1)

Prob_group_2 = Prob_geral*Prob_FEV1_2*Prob_FeNO_2*Prob_BD_2
print('Prob group 2: ', Prob_group_2)

高斯朴素贝叶斯分类的原理解释和手写代码实现

可以看到,这个样本具有属于第 2 组的概率最高。这就是朴素贝叶斯手动计算的的流程,但是这种成熟的算法可以使用来自 Scikit-Learn 的更高效的实现。

Scikit-Learn的分类器样例

Scikit-Learn的GaussianNB为我们提供了更加高效的方法,下面我们使用GaussianNB进行完整的分类实例。首先创建 X 和 y 变量,并执行训练和测试拆分:

#Creating X and y:
X = df.drop('dx', axis=1)
y = df['dx']

#Data split into train and test:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30)

在输入之前还需要使用 standardscaler 对数据进行标准化:

sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

现在构建和评估模型:

#Build the model:
classifier = GaussianNB()
classifier.fit(X_train, y_train)

#Evaluate the model:
print("training set score: %f" % classifier.score(X_train, y_train))
print("test set score: %f" % classifier.score(X_test, y_test))

下面使用混淆矩阵来可视化结果:

# Predicting the Test set results
y_pred = classifier.predict(X_test)

#Confusion Matrix:
cm = confusion_matrix(y_test, y_pred)
print(cm)

高斯朴素贝叶斯分类的原理解释和手写代码实现

通过混淆矩阵可以看到,的模型最适合预测类别 0,但类别 1 和 2 的错误率很高。为了查看这个问题,我们使用变量构建决策边界图:

df.to_csv('data.csv', index = False)
data = pd.read_csv('data.csv')
def gaussian_nb_a(data):
    x = data[['BD','FeNO',]].values
    y = data['dx'].astype(int).values
    Gauss_nb = GaussianNB()
    Gauss_nb.fit(x,y)
    print(Gauss_nb.score(x,y))
    #Plot decision region:
    plot_decision_regions(x,y, clf=Gauss_nb, legend=1)
    #Adding axes annotations:
    plt.xlabel('X_train')
    plt.ylabel('y_train')
    plt.title('Gaussian Naive Bayes')
    plt.show()
def gaussian_nb_b(data):
    x = data[['BD','FEV1',]].values
    y = data['dx'].astype(int).values 
    Gauss_nb = GaussianNB()
    Gauss_nb.fit(x,y)
    print(Gauss_nb.score(x,y))
    #Plot decision region:
    plot_decision_regions(x,y, clf=Gauss_nb, legend=1)
    #Adding axes annotations:
    plt.xlabel('X_train')
    plt.ylabel('y_train')
    plt.title('Gaussian Naive Bayes') 
    plt.show()
def gaussian_nb_c(data):
    x = data[['FEV1','FeNO',]].values
    y = data['dx'].astype(int).values
    Gauss_nb = GaussianNB()
    Gauss_nb.fit(x,y)
    print(Gauss_nb.score(x,y))
    #Plot decision region:
    plot_decision_regions(x,y, clf=Gauss_nb, legend=1)
    #Adding axes annotations:  
    plt.xlabel('X_train')
    plt.ylabel('y_train')  
    plt.title('Gaussian Naive Bayes')
    plt.show()
gaussian_nb_a(data)
gaussian_nb_b(data)
gaussian_nb_c(data)

高斯朴素贝叶斯分类的原理解释和手写代码实现

通过决策边界我们可以观察到分类错误的原因,从图中我们看到,很多点都是落在决策边界之外的,如果是实际数据我们需要分析具体原因,但是因为是测试数据所以我们也不需要更多的分析。

https://www.overfit.cn/post/0457f85f2c184ff0864db5256654aef1

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
美凌格栋栋酱 美凌格栋栋酱
6个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
Wesley13 Wesley13
3年前
#numpy#关于数组形状
!(http://static.oschina.net/uploads/space/2016/0623/155855_t48w_987833.jpg)numpy的多维数组虽然好用,但是不熟悉的话也很难理解,今天要研究基于多项式的朴素贝叶斯,sklearn的官方示例中用了numpy,但是看不太懂numpy的那句,于是总结如下:numpy的数组相
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Stella981 Stella981
3年前
HIVE 时间操作函数
日期函数UNIX时间戳转日期函数: from\_unixtime语法:   from\_unixtime(bigint unixtime\, string format\)返回值: string说明: 转化UNIX时间戳(从19700101 00:00:00 UTC到指定时间的秒数)到当前时区的时间格式举例:hive   selec
Wesley13 Wesley13
3年前
AI金融知识自学偏量化方向
前提:统计学习(统计分析)和机器学习之间的区别金融公司采用机器学习技术及招募相关人才要求第一个问题:  机器学习和统计学都是数据科学的一部分。机器学习中的学习一词表示算法依赖于一些数据(被用作训练集),来调整模型或算法的参数。这包含了许多的技术,比如回归、朴素贝叶斯或监督聚类。但不是所有的技术都适合机器学习。例如有一种统计和数
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Wesley13 Wesley13
3年前
KNN分类算法原理分析及代码实现
1、分类与聚类的概念与区别分类:是从一组已知的训练样本中发现分类模型,并且使用这个分类模型来预测待分类样本。目前常用的分类算法主要有:朴素贝叶斯分类算法(NaïveBayes)、支持向量机分类算法(SupportVectorMachines)、KNN最近邻算法(kNearestNeighbors)、神经网络算法(NNet)以及决策树(De
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
混沌映射
混沌映射
Lv1
我们以后在一起,你负责宠我,我负责可爱。
文章
4
粉丝
0
获赞
0