NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

抽象冰川
• 阅读 508

全文链接:tecdat.cn/?p=2155

最近我们被客户要求撰写关于NLP自然语言处理的研究报告,包括一些图形和统计输出。

随着网民规模的不断扩大,互联网不仅是传统媒体和生活方式的补充,也是民意凸显的地带。领导干部参与网络问政的制度化正在成为一种发展趋势,这种趋势与互联网发展的时代需求是分不开的

人民网《地方领导留言板》是备受百姓瞩目的民生栏目,也是人民网品牌栏目,被称为“社情民意的集散地、亲民爱民的回音壁”。

基于以上背景,tecdat研究人员对北京留言板里面的留言数据进行分析,探索网民们在呼吁什么。

数量与情感

朝阳区群众最活跃

图表

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

从上图可以看出不同地区留言板的情感倾向分布,总的来说,负面情感留言数目和积极情感相差不多,负面情感留言较多,占比46%,积极情感留言占比42%,中立情感的留言占比11%。

从地区来看,活跃在各大媒体的“朝阳区群众”留言数目也是最多的,其次是海淀区,昌平区。因此,从情感分布来看大部分留言还是在反应存在的问题,而不是一味赞美或者灌水。


点击标题查阅往期内容

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

python主题建模可视化LDA和T-SNE交互式可视化

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

左右滑动查看更多

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

01

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

02

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

03

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

04

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

主题分析

外地户口问题呼声最高

接下来,我们对于语料进行LDA建模,就是从语料库中挖掘出不同主题并进行分析,换言之,LDA提供了一种较为方便地量化研究主题的机器学习方法。

我们使用最大似然估计进行最优化主题个数的选取。当主题个数定为20的时候,似然估计数最大,即留言板数据分为20个主题的可能性比较大。将模型生成的20个主题中的前五个高频词取出,如下表所示。

图表

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

然后我们将占比最高的前六个主题与它们的情感倾向进行分析。

图表

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

从上图可以看出大家关于6大主题的讨论:

主题1反应孩子,外地户口办理的问题是最多的,反应了外地落户北京相关的难题(e.g.父母在京工作20多年,儿女上学却因户口问题不能进入好的高校就读)。

主题2是反应环境改造及棚户改造(e.g.棚户房屋破旧、墙面潮湿、上下水管道老化腐烂现象严重经常造成跑冒滴漏,遇到雨雪天气,道路积水、泥泞不堪,大院居民尤其是老人小孩出行非常不便)。

主题3是反应高考和医保(e.g.外地人衷心的希望政府能关注一下孩子在北京的高考问题)。

主题4是汽车摇号政策(e.g.现行的摇号方案是不可行,治标不治本.有的摇号是一个人摇不上,全家人都出动;有的是想买车根本摇不号;有的是不想买车就摇上了)。

主题5是反应工资和租房问题(e.g.我是外地退休教师。因为孩子在北京工作,故到北京帮助孩子料理家务,以支持孩子工作。因为北京房价昂贵,我们买不起大房,三代人只能挤着住。我想问问市长,我们是否也能住公租房)。

主题6是违法建筑(e.g.XX雅苑许多一层业主私搭乱建成风,且物业无能,造成极大的安全隐患)。

地区、主题与情感得分

接下来我们分析了不同主题和地区的情感倾向分布。从下图可以看出,主题3高考和医保、主题6 违法建筑、主题13教育拆迁的留言内容中积极情感占较大比例。

图表

NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

我们发现在不同主题中情感得分最高的地区中海淀区最多,其次是朝阳区和大兴区。同时也可以发现,情感得分最高的是在主题11居民生活下的朝阳区留言内容。总的来说,根据积极情感的内容分布来看,主题3高考和医保、主题6 违法建筑、主题13教育拆迁的留言内容中表现出较好的反馈。


NLP自然语言处理—主题模型LDA案例:挖掘人民网留言板文本数据|附代码数据

本文摘选 数据聆听人民网留言板的那些网事 ,点击“阅读原文”获取全文完整资料。


点击标题查阅往期内容

Python主题建模LDA模型、t-SNE 降维聚类、词云可视化文本挖掘新闻组数据集
自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据
R语言对NASA元数据进行文本挖掘的主题建模分析
R语言文本挖掘、情感分析和可视化哈利波特小说文本数据
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
用于NLP的Python:使用Keras进行深度学习文本生成
长短期记忆网络LSTM在时间序列预测和文本分类中的应用
用Rapidminer做文本挖掘的应用:情感分析
R语言文本挖掘tf-idf,主题建模,情感分析,n-gram建模研究
R语言对推特twitter数据进行文本情感分析
Python使用神经网络进行简单文本分类
用于NLP的Python:使用Keras的多标签文本LSTM神经网络分类
R语言文本挖掘使用tf-idf分析NASA元数据的关键字
R语言NLP案例:LDA主题文本挖掘优惠券推荐网站数据
Python使用神经网络进行简单文本分类
R语言自然语言处理(NLP):情感分析新闻文本数据
Python、R对小说进行文本挖掘和层次聚类可视化分析案例
R语言对推特twitter数据进行文本情感分析
R语言中的LDA模型:对文本数据进行主题模型topic modeling分析
R语言文本主题模型之潜在语义分析(LDA:Latent Dirichlet Allocation)

点赞
收藏
评论区
推荐文章
blmius blmius
4年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
美凌格栋栋酱 美凌格栋栋酱
7个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
4年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这