AI从入门到入门之手写数字识别模型java方式Dense全连接神经网络实现

京东云开发者
• 阅读 157

前言:授人以鱼不如授人以渔.先学会用,在学原理,在学创造,可能一辈子用不到这种能力,但是不能不具备这种能力。这篇文章主要是介绍算法入门Helloword之手写图片识别模型java中如何实现以及部分解释。目前大家对于人工智能-机器学习-神经网络的文章都是基于python语言的,对于擅长java的后端小伙伴想要去了解就不是特别友好,所以这里给大家介绍一下如何在java中实现,打开新世界的大门。以下为本人个人理解如有错误欢迎指正

一、目标:使用MNIST数据集训练手写数字图片识别模型

在实现一个模型的时候我们要准备哪些知识体系:

1.机器学习基础:包括监督学习、无监督学习、强化学习等基本概念。

2.数据处理与分析:数据清洗、特征工程、数据可视化等。

3.编程语言:如Python,用于实现机器学习算法。

4.数学基础:线性代数、概率统计、微积分等数学知识。

5.机器学习算法:线性回归、决策树、神经网络、支持向量机等算法。

6.深度学习框架:如TensorFlow、PyTorch等,用于构建和训练深度学习模型。

7.模型评估与优化:交叉验证、超参数调优、模型评估指标等。

8.实践经验:通过实际项目和竞赛积累经验,不断提升模型学习能力。

这里的机器学习HelloWorld是手写图片识别用的是TensorFlow框架

主要需要:

1.理解手写图片的数据集,训练集是什么样的数据(60000,28,28) 、训练集的标签是什么样的(1)

2.理解激活函数的作用

3.正向传递和反向传播的作用以及实现

4.训练模型和保存模型

5.加载保存的模型使用

二、java代码与python代码对比分析

因为python代码解释网上已经有很多了,这里不在重复解释

1.数据集的加载

python中

def load_data(dpata_folder):
    files = ["train-labels-idx1-ubyte.gz", "train-images-idx3-ubyte.gz",
             "t10k-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz"]
    paths = []
    for fname in files:
        paths.append(os.path.join(data_folder, fname))
    with gzip.open(paths[0], 'rb') as lbpath:
        train_y = np.frombuffer(lbpath.read(), np.uint8, offset=8)
    with gzip.open(paths[1], 'rb') as imgpath:
        train_x = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(train_y), 28, 28)
    with gzip.open(paths[2], 'rb') as lbpath:
        test_y = np.frombuffer(lbpath.read(), np.uint8, offset=8)
    with gzip.open(paths[3], 'rb') as imgpath:
        test_x = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(test_y), 28, 28)
    return (train_x, train_y), (test_x, test_y)
(train_x, train_y), (test_x, test_y) = load_data("mnistDataSet/")
print('\n train_x:%s, train_y:%s, test_x:%s, test_y:%s' % (train_x.shape, train_y.shape, test_x.shape, test_y.shape))
print(train_x.ndim)  # 数据集的维度
print(train_x.shape)  # 数据集的形状
print(len(train_x))  # 数据集的大小
print(train_x)  # 数据集
print("---查看单个数据")
print(train_x[0])
print(len(train_x[0]))
print(len(train_x[0][1]))
print(train_x[0][6])
print("---查看单个数据")
print(train_y[3])



AI从入门到入门之手写数字识别模型java方式Dense全连接神经网络实现



java中

SimpleMnist.class

 private static final String TRAINING_IMAGES_ARCHIVE = "mnist/train-images-idx3-ubyte.gz";
    private static final String TRAINING_LABELS_ARCHIVE = "mnist/train-labels-idx1-ubyte.gz";
    private static final String TEST_IMAGES_ARCHIVE = "mnist/t10k-images-idx3-ubyte.gz";
    private static final String TEST_LABELS_ARCHIVE = "mnist/t10k-labels-idx1-ubyte.gz";
//加载数据
MnistDataset validationDataset = MnistDataset.getOneValidationImage(3, TRAINING_IMAGES_ARCHIVE, TRAINING_LABELS_ARCHIVE,TEST_IMAGES_ARCHIVE, TEST_LABELS_ARCHIVE);

MnistDataset.class

  /**
     * @param trainingImagesArchive 训练图片路径
     * @param trainingLabelsArchive 训练标签路径
     * @param testImagesArchive     测试图片路径
     * @param testLabelsArchive     测试标签路径
     */
    public static MnistDataset getOneValidationImage(int index, String trainingImagesArchive, String trainingLabelsArchive,String testImagesArchive, String testLabelsArchive) {
        try {
            ByteNdArray trainingImages = readArchive(trainingImagesArchive);
            ByteNdArray trainingLabels = readArchive(trainingLabelsArchive);
            ByteNdArray testImages = readArchive(testImagesArchive);
            ByteNdArray testLabels = readArchive(testLabelsArchive);
            trainingImages.slice(sliceFrom(0));
            trainingLabels.slice(sliceTo(0));
            // 切片操作
            Index range = Indices.range(index, index + 1);// 切片的起始和结束索引
            ByteNdArray validationImage = trainingImages.slice(range); // 执行切片操作
            ByteNdArray validationLable = trainingLabels.slice(range); // 执行切片操作
            if (index >= 0) {
                return new MnistDataset(trainingImages,trainingLabels,validationImage,validationLable,testImages,testLabels);
            } else {
                return null;
            }
        } catch (IOException e) {
            throw new AssertionError(e);
        }
    }  
    private static ByteNdArray readArchive(String archiveName) throws IOException {
        System.out.println("archiveName = " + archiveName);
        DataInputStream archiveStream = new DataInputStream(new GZIPInputStream(MnistDataset.class.getClassLoader().getResourceAsStream(archiveName))
        );
        archiveStream.readShort(); // first two bytes are always 0
        byte magic = archiveStream.readByte();
        if (magic != TYPE_UBYTE) {
            throw new IllegalArgumentException(""" + archiveName + "" is not a valid archive");
        }
        int numDims = archiveStream.readByte();
        long[] dimSizes = new long[numDims];
        int size = 1;  // for simplicity, we assume that total size does not exceeds Integer.MAX_VALUE
        for (int i = 0; i < dimSizes.length; ++i) {
            dimSizes[i] = archiveStream.readInt();
            size *= dimSizes[i];
        }
        byte[] bytes = new byte[size];
        archiveStream.readFully(bytes);
        return NdArrays.wrap(Shape.of(dimSizes), DataBuffers.of(bytes, false, false));
    }
    /**
     * Mnist 数据集构造器
     */
    private MnistDataset(ByteNdArray trainingImages, ByteNdArray trainingLabels,ByteNdArray validationImages,ByteNdArray validationLabels,ByteNdArray testImages,ByteNdArray testLabels
    ) {
        this.trainingImages = trainingImages;
        this.trainingLabels = trainingLabels;
        this.validationImages = validationImages;
        this.validationLabels = validationLabels;
        this.testImages = testImages;
        this.testLabels = testLabels;
        this.imageSize = trainingImages.get(0).shape().size();
        System.out.println(String.format("train_x:%s,train_y:%s, test_x:%s, test_y:%s", trainingImages.shape(), trainingLabels.shape(), testImages.shape(), testLabels.shape()));
        System.out.println("数据集的维度:" + trainingImages.rank());
        System.out.println("数据集的形状 = " + trainingImages.shape());
        System.out.println("数据集的大小 = " + trainingImages.shape().get(0));
        System.out.println("查看单个数据 = " + trainingImages.get(0));
    }



AI从入门到入门之手写数字识别模型java方式Dense全连接神经网络实现



2.模型构建

python中

model = tensorflow.keras.Sequential()
model.add(tensorflow.keras.layers.Flatten(input_shape=(28, 28)))  # 添加Flatten层说明输入数据的形状
model.add(tensorflow.keras.layers.Dense(128, activation='relu'))  # 添加隐含层,为全连接层,128个节点,relu激活函数
model.add(tensorflow.keras.layers.Dense(10, activation='softmax'))  # 添加输出层,为全连接层,10个节点,softmax激活函数
print("打印模型结构")
# 使用 summary 打印模型结构
print('\n', model.summary())  # 查看网络结构和参数信息
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])

java中

SimpleMnist.class

        Ops tf = Ops.create(graph);
        // Create placeholders and variables, which should fit batches of an unknown number of images
        //创建占位符和变量,这些占位符和变量应适合未知数量的图像批次
        Placeholder<TFloat32> images = tf.placeholder(TFloat32.class);
        Placeholder<TFloat32> labels = tf.placeholder(TFloat32.class);

        // Create weights with an initial value of 0
        // 创建初始值为 0 的权重
        Shape weightShape = Shape.of(dataset.imageSize(), MnistDataset.NUM_CLASSES);
        Variable<TFloat32> weights = tf.variable(tf.zeros(tf.constant(weightShape), TFloat32.class));

        // Create biases with an initial value of 0
        //创建初始值为 0 的偏置
        Shape biasShape = Shape.of(MnistDataset.NUM_CLASSES);
        Variable<TFloat32> biases = tf.variable(tf.zeros(tf.constant(biasShape), TFloat32.class));

        // Predict the class of each image in the batch and compute the loss
        //使用 TensorFlow 的 tf.linalg.matMul 函数计算图像矩阵 images 和权重矩阵 weights 的矩阵乘法,并加上偏置项 biases。
        //wx+b
        MatMul<TFloat32> matMul = tf.linalg.matMul(images, weights);
        Add<TFloat32> add = tf.math.add(matMul, biases);
        //Softmax 是一个常用的激活函数,它将输入转换为表示概率分布的输出。对于输入向量中的每个元素,Softmax 函数会计算指数,
        //并对所有元素求和,然后将每个元素的指数除以总和,最终得到一个概率分布。这通常用于多分类问题,以输出每个类别的概率
        Softmax<TFloat32> softmax = tf.nn.softmax(add);

        // 创建一个计算交叉熵的Mean对象
        Mean<TFloat32> crossEntropy =
                tf.math.mean(  // 计算张量的平均值
                        tf.math.neg(  // 计算张量的负值
                                tf.reduceSum(  // 计算张量的和
                                        tf.math.mul(labels, tf.math.log(softmax)),  //计算标签和softmax预测的对数乘积
                                        tf.array(1)  // 在指定轴上求和
                                )
                        ),
                        tf.array(0)  // 在指定轴上求平均值
                );

        // Back-propagate gradients to variables for training
        //使用梯度下降优化器来最小化交叉熵损失函数。首先,创建了一个梯度下降优化器 optimizer,然后使用该优化器来最小化交叉熵损失函数 crossEntropy。
        Optimizer optimizer = new GradientDescent(graph, LEARNING_RATE);
        Op minimize = optimizer.minimize(crossEntropy);

3.训练模型

python中

history = model.fit(train_x, train_y, batch_size=64, epochs=5, validation_split=0.2)

java中

SimpleMnist.class

            // Train the model
            for (ImageBatch trainingBatch : dataset.trainingBatches(TRAINING_BATCH_SIZE)) {
                try (TFloat32 batchImages = preprocessImages(trainingBatch.images());
                     TFloat32 batchLabels = preprocessLabels(trainingBatch.labels())) {
                    // 创建会话运行器
                    session.runner()
                            // 添加要最小化的目标
                            .addTarget(minimize)
                            // 通过feed方法将图像数据输入到模型中
                            .feed(images.asOutput(), batchImages)
                            // 通过feed方法将标签数据输入到模型中
                            .feed(labels.asOutput(), batchLabels)
                            // 运行会话
                            .run();
                }
            }

4.模型评估

python中

test_loss, test_acc = model.evaluate(test_x, test_y)
model.evaluate(test_x, test_y, verbose=2)  # 每次迭代输出一条记录,来评价该模型是否有比较好的泛化能力
print('Test 损失: %.3f' % test_loss)
print('Test 精确度: %.3f' % test_acc)

java中

SimpleMnist.class

   // Test the model
            ImageBatch testBatch = dataset.testBatch();
            try (TFloat32 testImages = preprocessImages(testBatch.images());
                 TFloat32 testLabels = preprocessLabels(testBatch.labels());
                 // 定义一个TFloat32类型的变量accuracyValue,用于存储计算得到的准确率值
                 TFloat32 accuracyValue = (TFloat32) session.runner()
                         // 从会话中获取准确率值
                         .fetch(accuracy)
                         .fetch(predicted)
                         .fetch(expected)
                         // 将images作为输入,testImages作为数据进行喂养
                         .feed(images.asOutput(), testImages)
                         // 将labels作为输入,testLabels作为数据进行喂养
                         .feed(labels.asOutput(), testLabels)
                         // 运行会话并获取结果
                         .run()
                         // 获取第一个结果并存储在accuracyValue中
                         .get(0)) {
                System.out.println("Accuracy: " + accuracyValue.getFloat());
            }

5.保存模型

python中

# 使用save_model保存完整模型
# save_model(model, '/media/cfs/用户ERP名称/ea/saved_model', save_format='pb')
save_model(model, 'D:\pythonProject\mnistDemo\number_model', save_format='pb')

java中

SimpleMnist.class

            // 保存模型
            SavedModelBundle.Exporter exporter = SavedModelBundle.exporter("D:\ai\ai-demo").withSession(session);
            Signature.Builder builder = Signature.builder();
            builder.input("images", images);
            builder.input("labels", labels);
            builder.output("accuracy", accuracy);
            builder.output("expected", expected);
            builder.output("predicted", predicted);
            Signature signature = builder.build();
            SessionFunction sessionFunction = SessionFunction.create(signature, session);
            exporter.withFunction(sessionFunction);
            exporter.export();

6.加载模型

python中

 # 加载.pb模型文件
    global load_model
    load_model = load_model('D:\pythonProject\mnistDemo\number_model')
    load_model.summary()
    demo = tensorflow.reshape(test_x, (1, 28, 28))
    input_data = np.array(demo)  # 准备你的输入数据
    input_data = tensorflow.convert_to_tensor(input_data, dtype=tensorflow.float32)
    predictValue = load_model.predict(input_data)
    print("predictValue")
    print(predictValue)
    y_pred = np.argmax(predictValue)
    print('标签值:' + str(test_y) + '\n预测值:' + str(y_pred))
    return y_pred, test_y,

java中

SimpleMnist.class

    //加载模型并预测
    public void loadModel(String exportDir) {
        // load saved model
        SavedModelBundle model = SavedModelBundle.load(exportDir, "serve");
        try {
            printSignature(model);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        ByteNdArray validationImages = dataset.getValidationImages();
        ByteNdArray validationLabels = dataset.getValidationLabels();
        TFloat32 testImages = preprocessImages(validationImages);
        System.out.println("testImages = " + testImages.shape());
        TFloat32 testLabels = preprocessLabels(validationLabels);
        System.out.println("testLabels = " + testLabels.shape());
        Result run = model.session().runner()
                .feed("Placeholder:0", testImages)
                .feed("Placeholder_1:0", testLabels)
                .fetch("ArgMax:0")
                .fetch("ArgMax_1:0")
                .fetch("Mean_1:0")
                .run();
        // 处理输出
        Optional<Tensor> tensor1 = run.get("ArgMax:0");
        Optional<Tensor> tensor2 = run.get("ArgMax_1:0");
        Optional<Tensor> tensor3 = run.get("Mean_1:0");
        TInt64 predicted = (TInt64) tensor1.get();
        Long predictedValue = predicted.getObject(0);
        System.out.println("predictedValue = " + predictedValue);
        TInt64 expected = (TInt64) tensor2.get();
        Long expectedValue = expected.getObject(0);
        System.out.println("expectedValue = " + expectedValue);
        TFloat32 accuracy = (TFloat32) tensor3.get();
        System.out.println("accuracy = " + accuracy.getFloat());
    }
    //打印模型信息
    private static void printSignature(SavedModelBundle model) throws Exception {
        MetaGraphDef m = model.metaGraphDef();
        SignatureDef sig = m.getSignatureDefOrThrow("serving_default");
        int numInputs = sig.getInputsCount();
        int i = 1;
        System.out.println("MODEL SIGNATURE");
        System.out.println("Inputs:");
        for (Map.Entry<String, TensorInfo> entry : sig.getInputsMap().entrySet()) {
            TensorInfo t = entry.getValue();
            System.out.printf(
                    "%d of %d: %-20s (Node name in graph: %-20s, type: %s)\n",
                    i++, numInputs, entry.getKey(), t.getName(), t.getDtype());
        }
        int numOutputs = sig.getOutputsCount();
        i = 1;
        System.out.println("Outputs:");
        for (Map.Entry<String, TensorInfo> entry : sig.getOutputsMap().entrySet()) {
            TensorInfo t = entry.getValue();
            System.out.printf(
                    "%d of %d: %-20s (Node name in graph: %-20s, type: %s)\n",
                    i++, numOutputs, entry.getKey(), t.getName(), t.getDtype());
        }
    }

三、完整的python代码

本工程使用环境为

Python: 3.7.9

https://www.python.org/downloads/windows/

Anaconda: Python 3.11 Anaconda3-2023.09-0-Windows-x86_64

https://www.anaconda.com/download#downloads

tensorflow:2.0.0

直接从anaconda下安装

mnistTrainDemo.py

import gzip
import os.path
import tensorflow as tensorflow
from tensorflow import keras
# 可视化 image
import matplotlib.pyplot as plt
import numpy as np
from tensorflow.keras.models import save_model

# 加载数据
# mnist = keras.datasets.mnist
# mnistData = mnist.load_data() #Exception: URL fetch failure on https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz: None -- unknown url type: https
"""
这里可以直接使用
mnist = keras.datasets.mnist
mnistData = mnist.load_data() 加载数据,但是有的时候不成功,所以使用本地加载数据
"""
def load_data(data_folder):
    files = ["train-labels-idx1-ubyte.gz", "train-images-idx3-ubyte.gz",
             "t10k-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz"]
    paths = []
    for fname in files:
        paths.append(os.path.join(data_folder, fname))

    with gzip.open(paths[0], 'rb') as lbpath:
        train_y = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(paths[1], 'rb') as imgpath:
        train_x = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(train_y), 28, 28)

    with gzip.open(paths[2], 'rb') as lbpath:
        test_y = np.frombuffer(lbpath.read(), np.uint8, offset=8)

    with gzip.open(paths[3], 'rb') as imgpath:
        test_x = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(test_y), 28, 28)

    return (train_x, train_y), (test_x, test_y)

(train_x, train_y), (test_x, test_y) = load_data("mnistDataSet/")
print('\n train_x:%s, train_y:%s, test_x:%s, test_y:%s' % (train_x.shape, train_y.shape, test_x.shape, test_y.shape))
print(train_x.ndim)  # 数据集的维度
print(train_x.shape)  # 数据集的形状
print(len(train_x))  # 数据集的大小
print(train_x)  # 数据集
print("---查看单个数据")
print(train_x[0])
print(len(train_x[0]))
print(len(train_x[0][1]))
print(train_x[0][6])
# 可视化image图片、一副image的数据
# plt.imshow(train_x[0].reshape(28, 28), cmap="binary")
# plt.show()
print("---查看单个数据")
print(train_y[0])

# 数据预处理
# 归一化、并转换为tensor张量,数据类型为float32.  ---归一化也可能造成识别率低
# train_x, test_x = tensorflow.cast(train_x / 255.0, tensorflow.float32), tensorflow.cast(test_x / 255.0,
#                                                                                         tensorflow.float32),
# train_y, test_y = tensorflow.cast(train_y, tensorflow.int16), tensorflow.cast(test_y, tensorflow.int16)
# print("---查看单个数据归一后的数据")
# print(train_x[0][6])  # 30/255=0.11764706  ---归一化每个值除以255
# print(train_y[0])

# Step2: 配置网络 建立模型
'''
以下的代码判断就是定义一个简单的多层感知器,一共有三层,
两个大小为100的隐层和一个大小为10的输出层,因为MNIST数据集是手写0到9的灰度图像,
类别有10个,所以最后的输出大小是10。最后输出层的激活函数是Softmax,
所以最后的输出层相当于一个分类器。加上一个输入层的话,
多层感知器的结构是:输入层-->>隐层-->>隐层-->>输出层。
激活函数 https://zhuanlan.zhihu.com/p/337902763
'''
# 构造模型
# model = keras.Sequential([
#     # 在第一层的网络中,我们的输入形状是28*28,这里的形状就是图片的长度和宽度。
#     keras.layers.Flatten(input_shape=(28, 28)),
#     # 所以神经网络有点像滤波器(过滤装置),输入一组28*28像素的图片后,输出10个类别的判断结果。那这个128的数字是做什么用的呢?
#     # 我们可以这样想象,神经网络中有128个函数,每个函数都有自己的参数。
#     # 我们给这些函数进行一个编号,f0,f1…f127 ,我们想的是当图片的像素一一带入这128个函数后,这些函数的组合最终输出一个标签值,在这个样例中,我们希望它输出09 。
#     # 为了得到这个结果,计算机必须要搞清楚这128个函数的具体参数,之后才能计算各个图片的标签。这里的逻辑是,一旦计算机搞清楚了这些参数,那它就能够认出不同的10个类别的事物了。
#     keras.layers.Dense(100, activation=tensorflow.nn.relu),
#     # 最后一层是10,是数据集中各种类别的代号,数据集总共有10类,这里就是10 。
#     keras.layers.Dense(10, activation=tensorflow.nn.softmax)
# ])

model = tensorflow.keras.Sequential()
model.add(tensorflow.keras.layers.Flatten(input_shape=(28, 28)))  # 添加Flatten层说明输入数据的形状
model.add(tensorflow.keras.layers.Dense(128, activation='relu'))  # 添加隐含层,为全连接层,128个节点,relu激活函数
model.add(tensorflow.keras.layers.Dense(10, activation='softmax'))  # 添加输出层,为全连接层,10个节点,softmax激活函数
print("打印模型结构")
# 使用 summary 打印模型结构
# print(model.summary())
print('\n', model.summary())  # 查看网络结构和参数信息

'''
接着是配置模型,在这一步,我们需要指定模型训练时所使用的优化算法与损失函数,
此外,这里我们也可以定义计算精度相关的API。
优化器https://zhuanlan.zhihu.com/p/27449596
'''
# 配置模型  配置模型训练方法
# 设置神经网络的优化器和损失函数。# 使用Adam算法进行优化   # 使用CrossEntropyLoss 计算损失 # 使用Accuracy 计算精度
# model.compile(optimizer=tensorflow.optimizers.Adam(), loss='sparse_categorical_crossentropy', metrics=['accuracy'])
# adam算法参数采用keras默认的公开参数,损失函数采用稀疏交叉熵损失函数,准确率采用稀疏分类准确率函数
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])

# Step3:模型训练
# 开始模型训练
# model.fit(x_train,  # 设置训练数据集
#           y_train,
#           epochs=5,  # 设置训练轮数
#           batch_size=64,  # 设置 batch_size
#           verbose=1)  # 设置日志打印格式
# 批量训练大小为64,迭代5次,测试集比例0.2(48000条训练集数据,12000条测试集数据)
history = model.fit(train_x, train_y, batch_size=64, epochs=5, validation_split=0.2)

# STEP4: 模型评估
# 评估模型,不输出预测结果输出损失和精确度. test_loss损失,test_acc精确度
test_loss, test_acc = model.evaluate(test_x, test_y)
model.evaluate(test_x, test_y, verbose=2)  # 每次迭代输出一条记录,来评价该模型是否有比较好的泛化能力
# model.evaluate(test_dataset, verbose=1)
print('Test 损失: %.3f' % test_loss)
print('Test 精确度: %.3f' % test_acc)
# 结果可视化
print(history.history)
loss = history.history['loss']  # 训练集损失
val_loss = history.history['val_loss']  # 测试集损失
acc = history.history['sparse_categorical_accuracy']  # 训练集准确率
val_acc = history.history['val_sparse_categorical_accuracy']  # 测试集准确率

plt.figure(figsize=(10, 3))
plt.subplot(121)
plt.plot(loss, color='b', label='train')
plt.plot(val_loss, color='r', label='test')
plt.ylabel('loss')
plt.legend()

plt.subplot(122)
plt.plot(acc, color='b', label='train')
plt.plot(val_acc, color='r', label='test')
plt.ylabel('Accuracy')
plt.legend()

# 暂停5秒关闭画布,否则画布一直打开的同时,会持续占用GPU内存
# plt.ion()  # 打开交互式操作模式
# plt.show()
# plt.pause(5)
# plt.close()
# plt.show()

# Step5:模型预测 输入测试数据,输出预测结果
for i in range(1):
    num = np.random.randint(1, 10000)  # 在1~10000之间生成随机整数
    plt.subplot(2, 5, i + 1)
    plt.axis('off')
    plt.imshow(test_x[num], cmap='gray')
    demo = tensorflow.reshape(test_x[num], (1, 28, 28))
    y_pred = np.argmax(model.predict(demo))
    plt.title('标签值:' + str(test_y[num]) + '\n预测值:' + str(y_pred))
# plt.show()

'''
保存模型
训练好的模型可以用于加载后对新输入数据进行预测,所以需要先进行保存已训练模型
'''
#使用save_model保存完整模型
save_model(model, 'D:\pythonProject\mnistDemo\number_model', save_format='pb')

mnistPredictDemo.py

import numpy as np
import tensorflow as tensorflow
import gzip
import os.path
from tensorflow.keras.models import load_model
# 预测
def predict(test_x, test_y):
    test_x, test_y = test_x, test_y
    '''
    五、模型评估
    需要先加载已训练模型,然后用其预测新的数据,计算评估指标
    '''
    # 模型加载
    # 加载.pb模型文件
    global load_model
    # load_model = load_model('./saved_model')
    load_model = load_model('D:\pythonProject\mnistDemo\number_model')
    load_model.summary()
    # make a prediction
    print("test_x")
    print(test_x)
    print(test_x.ndim)
    print(test_x.shape)

    demo = tensorflow.reshape(test_x, (1, 28, 28))
    input_data = np.array(demo)  # 准备你的输入数据
    input_data = tensorflow.convert_to_tensor(input_data, dtype=tensorflow.float32)
    # test_x = tensorflow.cast(test_x / 255.0, tensorflow.float32)
    # test_y = tensorflow.cast(test_y, tensorflow.int16)
    predictValue = load_model.predict(input_data)
    print("predictValue")
    print(predictValue)
    y_pred = np.argmax(predictValue)
    print('标签值:' + str(test_y) + '\n预测值:' + str(y_pred))
    return y_pred, test_y,

def load_data(data_folder):
    files = ["train-labels-idx1-ubyte.gz", "train-images-idx3-ubyte.gz",
             "t10k-labels-idx1-ubyte.gz", "t10k-images-idx3-ubyte.gz"]
    paths = []
    for fname in files:
        paths.append(os.path.join(data_folder, fname))
    with gzip.open(paths[0], 'rb') as lbpath:
        train_y = np.frombuffer(lbpath.read(), np.uint8, offset=8)
    with gzip.open(paths[1], 'rb') as imgpath:
        train_x = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(train_y), 28, 28)
    with gzip.open(paths[2], 'rb') as lbpath:
        test_y = np.frombuffer(lbpath.read(), np.uint8, offset=8)
    with gzip.open(paths[3], 'rb') as imgpath:
        test_x = np.frombuffer(imgpath.read(), np.uint8, offset=16).reshape(len(test_y), 28, 28)
    return (train_x, train_y), (test_x, test_y)

(train_x, train_y), (test_x, test_y) = load_data("mnistDataSet/")
print(train_x[0])
predict(train_x[0], train_y)

四、完整的java代码

tensorflow 需要的java 版本对应表: https://github.com/tensorflow/java/#tensorflow-version-support

本工程使用环境为

jdk版本:openjdk-21

pom依赖如下:


        <dependency>
            <groupId>org.tensorflow</groupId>
            <artifactId>tensorflow-core-platform</artifactId>
            <version>0.6.0-SNAPSHOT</version>
        </dependency>

        <dependency>
            <groupId>org.tensorflow</groupId>
            <artifactId>tensorflow-framework</artifactId>
            <version>0.6.0-SNAPSHOT</version>
        </dependency>
    </dependencies>

    <repositories>
        <repository>
            <id>tensorflow-snapshots</id>
            <url>https://oss.sonatype.org/content/repositories/snapshots/</url>
            <snapshots>
                <enabled>true</enabled>
            </snapshots>
        </repository>
    </repositories>

数据集创建和解析类

MnistDataset.class

package org.example.tensorDemo.datasets.mnist;

import org.example.tensorDemo.datasets.ImageBatch;
import org.example.tensorDemo.datasets.ImageBatchIterator;
import org.tensorflow.ndarray.*;
import org.tensorflow.ndarray.buffer.DataBuffers;
import org.tensorflow.ndarray.index.Index;
import org.tensorflow.ndarray.index.Indices;

import java.io.DataInputStream;
import java.io.IOException;
import java.util.zip.GZIPInputStream;

import static org.tensorflow.ndarray.index.Indices.sliceFrom;
import static org.tensorflow.ndarray.index.Indices.sliceTo;



public class MnistDataset {
    public static final int NUM_CLASSES = 10;

    private static final int TYPE_UBYTE = 0x08;

    /**
     * 训练图片字节类型的多维数组
     */
    private final ByteNdArray trainingImages;

    /**
     * 训练标签字节类型的多维数组
     */
    private final ByteNdArray trainingLabels;

    /**
     * 验证图片字节类型的多维数组
     */
    public final ByteNdArray validationImages;

    /**
     * 验证标签字节类型的多维数组
     */
    public final ByteNdArray validationLabels;

    /**
     * 测试图片字节类型的多维数组
     */
    private final ByteNdArray testImages;

    /**
     * 测试标签字节类型的多维数组
     */
    private final ByteNdArray testLabels;

    /**
     * 图片的大小
     */
    private final long imageSize;


    /**
     * Mnist 数据集构造器
     */
    private MnistDataset(
            ByteNdArray trainingImages,
            ByteNdArray trainingLabels,
            ByteNdArray validationImages,
            ByteNdArray validationLabels,
            ByteNdArray testImages,
            ByteNdArray testLabels
    ) {
        this.trainingImages = trainingImages;
        this.trainingLabels = trainingLabels;
        this.validationImages = validationImages;
        this.validationLabels = validationLabels;
        this.testImages = testImages;
        this.testLabels = testLabels;
        //第一个图像的形状,并返回其尺寸大小。每一张图片包含28X28个像素点 所以应该为784
        this.imageSize = trainingImages.get(0).shape().size();
//        System.out.println("imageSize = " + imageSize);


//        System.out.println(String.format("train_x:%s,train_y:%s, test_x:%s, test_y:%s", trainingImages.shape(), trainingLabels.shape(), testImages.shape(), testLabels.shape()));
//        System.out.println("数据集的维度:" + trainingImages.rank());
//        System.out.println("数据集的形状 = " + trainingImages.shape());
//        System.out.println("数据集的大小 = " + trainingImages.shape().get(0));
//        System.out.println("数据集 = ");
//        for (int i = 0; i < trainingImages.shape().get(0); i++) {
//            for (int j = 0; j < trainingImages.shape().get(1); j++) {
//                for (int k = 0; k < trainingImages.shape().get(2); k++) {
//                    System.out.print(trainingImages.getObject(i, j, k) + " ");
//                }
//                System.out.println();
//            }
//            System.out.println();
//        }
//        System.out.println("查看单个数据 = " + trainingImages.get(0));
//        for (int j = 0; j < trainingImages.shape().get(1); j++) {
//            for (int k = 0; k < trainingImages.shape().get(2); k++) {
//                System.out.print(trainingImages.getObject(0, j, k) + " ");
//            }
//            System.out.println();
//        }
//        System.out.println("查看单个数据大小 = " + trainingImages.get(0).size());
//        System.out.println("查看trainingImages三维数组下的第一个元素的第二个二维数组大小 = " + trainingImages.get(0).get(1).size());
//        System.out.println("查看trainingImages三维数组下的第一个元素的第7个二维数组的第8个元素 = " + trainingImages.getObject(0, 6, 8));
//        System.out.println("trainingLabels = " + trainingLabels.getObject(1));
    }

    /**
     * @param validationSize        验证的数据
     * @param trainingImagesArchive 训练图片路径
     * @param trainingLabelsArchive 训练标签路径
     * @param testImagesArchive     测试图片路径
     * @param testLabelsArchive     测试标签路径
     */
    public static MnistDataset create(int validationSize, String trainingImagesArchive, String trainingLabelsArchive,
                                      String testImagesArchive, String testLabelsArchive) {
        try {
            ByteNdArray trainingImages = readArchive(trainingImagesArchive);
            ByteNdArray trainingLabels = readArchive(trainingLabelsArchive);
            ByteNdArray testImages = readArchive(testImagesArchive);
            ByteNdArray testLabels = readArchive(testLabelsArchive);

            if (validationSize > 0) {
                return new MnistDataset(
                        trainingImages.slice(sliceFrom(validationSize)),
                        trainingLabels.slice(sliceFrom(validationSize)),
                        trainingImages.slice(sliceTo(validationSize)),
                        trainingLabels.slice(sliceTo(validationSize)),
                        testImages,
                        testLabels
                );
            }
            return new MnistDataset(trainingImages, trainingLabels, null, null, testImages, testLabels);

        } catch (IOException e) {
            throw new AssertionError(e);
        }
    }

    /**
     * @param trainingImagesArchive 训练图片路径
     * @param trainingLabelsArchive 训练标签路径
     * @param testImagesArchive     测试图片路径
     * @param testLabelsArchive     测试标签路径
     */
    public static MnistDataset getOneValidationImage(int index, String trainingImagesArchive, String trainingLabelsArchive,
                                                     String testImagesArchive, String testLabelsArchive) {
        try {
            ByteNdArray trainingImages = readArchive(trainingImagesArchive);
            ByteNdArray trainingLabels = readArchive(trainingLabelsArchive);
            ByteNdArray testImages = readArchive(testImagesArchive);
            ByteNdArray testLabels = readArchive(testLabelsArchive);
            trainingImages.slice(sliceFrom(0));
            trainingLabels.slice(sliceTo(0));
            // 切片操作
            Index range = Indices.range(index, index + 1);// 切片的起始和结束索引
            ByteNdArray validationImage = trainingImages.slice(range); // 执行切片操作
            ByteNdArray validationLable = trainingLabels.slice(range); // 执行切片操作


            if (index >= 0) {
                return new MnistDataset(
                        trainingImages,
                        trainingLabels,
                        validationImage,
                        validationLable,
                        testImages,
                        testLabels
                );
            } else {
                return null;
            }
        } catch (IOException e) {
            throw new AssertionError(e);
        }
    }

    private static ByteNdArray readArchive(String archiveName) throws IOException {
        System.out.println("archiveName = " + archiveName);
        DataInputStream archiveStream = new DataInputStream(
                //new GZIPInputStream(new java.io.FileInputStream("src/main/resources/"+archiveName))
                new GZIPInputStream(MnistDataset.class.getClassLoader().getResourceAsStream(archiveName))
        );
        //todo 不知道怎么读取和实际的内部结构
        archiveStream.readShort(); // first two bytes are always 0
        byte magic = archiveStream.readByte();
        if (magic != TYPE_UBYTE) {
            throw new IllegalArgumentException(""" + archiveName + "" is not a valid archive");
        }
        int numDims = archiveStream.readByte();
        long[] dimSizes = new long[numDims];
        int size = 1;  // for simplicity, we assume that total size does not exceeds Integer.MAX_VALUE
        for (int i = 0; i < dimSizes.length; ++i) {
            dimSizes[i] = archiveStream.readInt();
            size *= dimSizes[i];
        }
        byte[] bytes = new byte[size];
        archiveStream.readFully(bytes);
        return NdArrays.wrap(Shape.of(dimSizes), DataBuffers.of(bytes, false, false));
    }

    public Iterable<ImageBatch> trainingBatches(int batchSize) {
        return () -> new ImageBatchIterator(batchSize, trainingImages, trainingLabels);
    }

    public Iterable<ImageBatch> validationBatches(int batchSize) {
        return () -> new ImageBatchIterator(batchSize, validationImages, validationLabels);
    }

    public Iterable<ImageBatch> testBatches(int batchSize) {
        return () -> new ImageBatchIterator(batchSize, testImages, testLabels);
    }

    public ImageBatch testBatch() {
        return new ImageBatch(testImages, testLabels);
    }

    public long imageSize() {
        return imageSize;
    }

    public long numTrainingExamples() {
        return trainingLabels.shape().size(0);
    }

    public long numTestingExamples() {
        return testLabels.shape().size(0);
    }

    public long numValidationExamples() {
        return validationLabels.shape().size(0);
    }

    public ByteNdArray getValidationImages() {
        return validationImages;
    }

    public ByteNdArray getValidationLabels() {
        return validationLabels;
    }
}

SimpleMnist.class

package org.example.tensorDemo.dense;
import org.example.tensorDemo.datasets.ImageBatch;
import org.example.tensorDemo.datasets.mnist.MnistDataset;
import org.tensorflow.*;
import org.tensorflow.framework.optimizers.GradientDescent;
import org.tensorflow.framework.optimizers.Optimizer;
import org.tensorflow.ndarray.ByteNdArray;
import org.tensorflow.ndarray.Shape;
import org.tensorflow.op.Op;
import org.tensorflow.op.Ops;
import org.tensorflow.op.core.Placeholder;
import org.tensorflow.op.core.Variable;
import org.tensorflow.op.linalg.MatMul;
import org.tensorflow.op.math.Add;
import org.tensorflow.op.math.Mean;
import org.tensorflow.op.nn.Softmax;
import org.tensorflow.proto.framework.MetaGraphDef;
import org.tensorflow.proto.framework.SignatureDef;
import org.tensorflow.proto.framework.TensorInfo;
import org.tensorflow.types.TFloat32;
import org.tensorflow.types.TInt64;
import java.io.IOException;
import java.util.Map;
import java.util.Optional;

public class SimpleMnist implements Runnable {
    private static final String TRAINING_IMAGES_ARCHIVE = "mnist/train-images-idx3-ubyte.gz";
    private static final String TRAINING_LABELS_ARCHIVE = "mnist/train-labels-idx1-ubyte.gz";
    private static final String TEST_IMAGES_ARCHIVE = "mnist/t10k-images-idx3-ubyte.gz";
    private static final String TEST_LABELS_ARCHIVE = "mnist/t10k-labels-idx1-ubyte.gz";

    public static void main(String[] args) {
        //加载数据集
//        MnistDataset dataset = MnistDataset.create(VALIDATION_SIZE, TRAINING_IMAGES_ARCHIVE, TRAINING_LABELS_ARCHIVE,
//                TEST_IMAGES_ARCHIVE, TEST_LABELS_ARCHIVE);
        MnistDataset validationDataset = MnistDataset.getOneValidationImage(3, TRAINING_IMAGES_ARCHIVE, TRAINING_LABELS_ARCHIVE,
                TEST_IMAGES_ARCHIVE, TEST_LABELS_ARCHIVE);
        //创建了一个名为graph的图形对象。
        try (Graph graph = new Graph()) {
            SimpleMnist mnist = new SimpleMnist(graph, validationDataset);
            mnist.run();//构建和训练模型
            mnist.loadModel("D:\ai\ai-demo");
        }
    }

    @Override
    public void run() {
        Ops tf = Ops.create(graph);
        // Create placeholders and variables, which should fit batches of an unknown number of images
        //创建占位符和变量,这些占位符和变量应适合未知数量的图像批次
        Placeholder<TFloat32> images = tf.placeholder(TFloat32.class);
        Placeholder<TFloat32> labels = tf.placeholder(TFloat32.class);

        // Create weights with an initial value of 0
        // 创建初始值为 0 的权重
        Shape weightShape = Shape.of(dataset.imageSize(), MnistDataset.NUM_CLASSES);
        Variable<TFloat32> weights = tf.variable(tf.zeros(tf.constant(weightShape), TFloat32.class));

        // Create biases with an initial value of 0
        //创建初始值为 0 的偏置
        Shape biasShape = Shape.of(MnistDataset.NUM_CLASSES);
        Variable<TFloat32> biases = tf.variable(tf.zeros(tf.constant(biasShape), TFloat32.class));

        // Predict the class of each image in the batch and compute the loss
        //使用 TensorFlow 的 tf.linalg.matMul 函数计算图像矩阵 images 和权重矩阵 weights 的矩阵乘法,并加上偏置项 biases。
        //wx+b
        MatMul<TFloat32> matMul = tf.linalg.matMul(images, weights);
        Add<TFloat32> add = tf.math.add(matMul, biases);

        //Softmax 是一个常用的激活函数,它将输入转换为表示概率分布的输出。对于输入向量中的每个元素,Softmax 函数会计算指数,
        //并对所有元素求和,然后将每个元素的指数除以总和,最终得到一个概率分布。这通常用于多分类问题,以输出每个类别的概率
        //激活函数 
        Softmax<TFloat32> softmax = tf.nn.softmax(add);

        // 创建一个计算交叉熵的Mean对象
        //损失函数
        Mean<TFloat32> crossEntropy =
                tf.math.mean(  // 计算张量的平均值
                        tf.math.neg(  // 计算张量的负值
                                tf.reduceSum(  // 计算张量的和
                                        tf.math.mul(labels, tf.math.log(softmax)),  //计算标签和softmax预测的对数乘积
                                        tf.array(1)  // 在指定轴上求和
                                )
                        ),
                        tf.array(0)  // 在指定轴上求平均值
                );

        // Back-propagate gradients to variables for training
        //使用梯度下降优化器来最小化交叉熵损失函数。首先,创建了一个梯度下降优化器 optimizer,然后使用该优化器来最小化交叉熵损失函数 crossEntropy。
        //梯度下降 https://www.cnblogs.com/guoyaohua/p/8542554.html
        Optimizer optimizer = new GradientDescent(graph, LEARNING_RATE);
        Op minimize = optimizer.minimize(crossEntropy);

        // Compute the accuracy of the model
        //使用 argMax 函数找出在给定轴上张量中最大值的索引,
        Operand<TInt64> predicted = tf.math.argMax(softmax, tf.constant(1));
        Operand<TInt64> expected = tf.math.argMax(labels, tf.constant(1));
        //使用 equal 函数比较模型预测的标签和实际标签是否相等,再用 cast 函数将布尔值转换为浮点数,最后使用 mean 函数计算准确率。
        Operand<TFloat32> accuracy = tf.math.mean(tf.dtypes.cast(tf.math.equal(predicted, expected), TFloat32.class), tf.array(0));

        // Run the graph
        try (Session session = new Session(graph)) {
            // Train the model
            for (ImageBatch trainingBatch : dataset.trainingBatches(TRAINING_BATCH_SIZE)) {
                try (TFloat32 batchImages = preprocessImages(trainingBatch.images());
                     TFloat32 batchLabels = preprocessLabels(trainingBatch.labels())) {
                    System.out.println("batchImages = " + batchImages.shape());
                    System.out.println("batchLabels = " + batchLabels.shape());
                    // 创建会话运行器
                    session.runner()
                            // 添加要最小化的目标
                            .addTarget(minimize)
                            // 通过feed方法将图像数据输入到模型中
                            .feed(images.asOutput(), batchImages)
                            // 通过feed方法将标签数据输入到模型中
                            .feed(labels.asOutput(), batchLabels)
                            // 运行会话
                            .run();
                }
            }

            // Test the model
            ImageBatch testBatch = dataset.testBatch();
            try (TFloat32 testImages = preprocessImages(testBatch.images());
                 TFloat32 testLabels = preprocessLabels(testBatch.labels());
                 // 定义一个TFloat32类型的变量accuracyValue,用于存储计算得到的准确率值
                 TFloat32 accuracyValue = (TFloat32) session.runner()
                         // 从会话中获取准确率值
                         .fetch(accuracy)
                         .fetch(predicted)
                         .fetch(expected)
                         // 将images作为输入,testImages作为数据进行喂养
                         .feed(images.asOutput(), testImages)
                         // 将labels作为输入,testLabels作为数据进行喂养
                         .feed(labels.asOutput(), testLabels)
                         // 运行会话并获取结果
                         .run()
                         // 获取第一个结果并存储在accuracyValue中
                         .get(0)) {
                System.out.println("Accuracy: " + accuracyValue.getFloat());
            }
            // 保存模型
            SavedModelBundle.Exporter exporter = SavedModelBundle.exporter("D:\ai\ai-demo").withSession(session);
            Signature.Builder builder = Signature.builder();
            builder.input("images", images);
            builder.input("labels", labels);
            builder.output("accuracy", accuracy);
            builder.output("expected", expected);
            builder.output("predicted", predicted);
            Signature signature = builder.build();
            SessionFunction sessionFunction = SessionFunction.create(signature, session);
            exporter.withFunction(sessionFunction);
            exporter.export();
        } catch (IOException e) {
            throw new RuntimeException(e);
        }

    }

    private static final int VALIDATION_SIZE = 5;
    private static final int TRAINING_BATCH_SIZE = 100;
    private static final float LEARNING_RATE = 0.2f;

    private static TFloat32 preprocessImages(ByteNdArray rawImages) {
        Ops tf = Ops.create();
        // Flatten images in a single dimension and normalize their pixels as floats.
        long imageSize = rawImages.get(0).shape().size();
        return tf.math.div(
                tf.reshape(
                        tf.dtypes.cast(tf.constant(rawImages), TFloat32.class),
                        tf.array(-1L, imageSize)
                ),
                tf.constant(255.0f)
        ).asTensor();
    }

    private static TFloat32 preprocessLabels(ByteNdArray rawLabels) {
        Ops tf = Ops.create();
        // Map labels to one hot vectors where only the expected predictions as a value of 1.0
        return tf.oneHot(
                tf.constant(rawLabels),
                tf.constant(MnistDataset.NUM_CLASSES),
                tf.constant(1.0f),
                tf.constant(0.0f)
        ).asTensor();
    }

    private final Graph graph;
    private final MnistDataset dataset;

    private SimpleMnist(Graph graph, MnistDataset dataset) {
        this.graph = graph;
        this.dataset = dataset;
    }

    public void loadModel(String exportDir) {
        // load saved model
        SavedModelBundle model = SavedModelBundle.load(exportDir, "serve");
        try {
            printSignature(model);
        } catch (Exception e) {
            throw new RuntimeException(e);
        }
        ByteNdArray validationImages = dataset.getValidationImages();
        ByteNdArray validationLabels = dataset.getValidationLabels();
        TFloat32 testImages = preprocessImages(validationImages);
        System.out.println("testImages = " + testImages.shape());
        TFloat32 testLabels = preprocessLabels(validationLabels);
        System.out.println("testLabels = " + testLabels.shape());
        Result run = model.session().runner()
                .feed("Placeholder:0", testImages)
                .feed("Placeholder_1:0", testLabels)
                .fetch("ArgMax:0")
                .fetch("ArgMax_1:0")
                .fetch("Mean_1:0")
                .run();
        // 处理输出
        Optional<Tensor> tensor1 = run.get("ArgMax:0");
        Optional<Tensor> tensor2 = run.get("ArgMax_1:0");
        Optional<Tensor> tensor3 = run.get("Mean_1:0");
        TInt64 predicted = (TInt64) tensor1.get();
        Long predictedValue = predicted.getObject(0);
        System.out.println("predictedValue = " + predictedValue);
        TInt64 expected = (TInt64) tensor2.get();
        Long expectedValue = expected.getObject(0);
        System.out.println("expectedValue = " + expectedValue);
        TFloat32 accuracy = (TFloat32) tensor3.get();
        System.out.println("accuracy = " + accuracy.getFloat());
    }

    private static void printSignature(SavedModelBundle model) throws Exception {
        MetaGraphDef m = model.metaGraphDef();
        SignatureDef sig = m.getSignatureDefOrThrow("serving_default");
        int numInputs = sig.getInputsCount();
        int i = 1;
        System.out.println("MODEL SIGNATURE");
        System.out.println("Inputs:");
        for (Map.Entry<String, TensorInfo> entry : sig.getInputsMap().entrySet()) {
            TensorInfo t = entry.getValue();
            System.out.printf(
                    "%d of %d: %-20s (Node name in graph: %-20s, type: %s)\n",
                    i++, numInputs, entry.getKey(), t.getName(), t.getDtype());
        }
        int numOutputs = sig.getOutputsCount();
        i = 1;
        System.out.println("Outputs:");
        for (Map.Entry<String, TensorInfo> entry : sig.getOutputsMap().entrySet()) {
            TensorInfo t = entry.getValue();
            System.out.printf(
                    "%d of %d: %-20s (Node name in graph: %-20s, type: %s)\n",
                    i++, numOutputs, entry.getKey(), t.getName(), t.getDtype());
        }
        System.out.println("-----------------------------------------------");
    }
}

五、最后两套代码运行结果



AI从入门到入门之手写数字识别模型java方式Dense全连接神经网络实现





AI从入门到入门之手写数字识别模型java方式Dense全连接神经网络实现



六、待完善点

1、这里并没有对提供web服务输入图片以及图片数据二值话等进行处理。有兴趣的小伙伴可以自己进行尝试

2、并没有使用卷积神经网络等,只是用了wx+b和激活函数进行跳跃,以及阶梯下降算法和交叉熵

3、没有进行更多层级的设计等

点赞
收藏
评论区
推荐文章
小天 小天
1年前
机器学习入门简介
在这篇博文中,我们将简要介绍以下主题,为您提供机器学习的基本介绍:什么是机器学习训练机器学习模型优化参数神经网络如果您不是专家,请不要担心—这篇博文所需的唯一知识是基础高中数学。什么是机器学习?牛津词典将机器学习定义为:“计算机从经验中学习的能力”。机器学
Stella981 Stella981
2年前
MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(二)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处。联系方式:460356155@qq.com在前一篇文章MINIST深度学习识别:python全连接神经网络和pytorchLeNetCNN网络训练实现及比较(一)(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fwww
Stella981 Stella981
2年前
JestClient 使用教程,教你完成大部分ElasticSearch的操作。
  本篇文章代码实现不多,主要是教你如何用JestClient去实现ElasticSearch上的操作。  授人以鱼不如授人以渔。一、说明  1、elasticsearch版本:6.2.4。    jdk版本:1.8(该升级赶紧升级吧,现在很多技术都是最低要求1.8)。    jest版本:5.3.3。  2、一些不错的文
京东云开发者 京东云开发者
9个月前
ASM字节码操作类库(打开java语言世界通往字节码世界的大门) | 京东云技术团队
前言:授人以鱼不如授人以渔,应用asm的文章有很多,简单demo的也很多,那么ASM都具备哪些能力呢?如何去学习编写ASM代码呢?什么样的情景需要用到ASM呢?让我们带着这些问题阅读这篇文章吧。这里由于篇幅限制做了删减(第六部分TreeApi和CoreAp
京东云开发者 京东云开发者
9个月前
nginx+lua+redis实现灰度发布 | 京东云技术团队
前言:授人以鱼不如授人以渔.先学会用,在学原理,在学创造,可能一辈子用不到这种能力,但是不能不具备这种能力。这篇文章主要是沉淀使用nginxluaredis实现灰度,当我们具备了这种能力,随时可以基于这种能力和思想调整实现方案:比如nginxlua