MongoDB性能最佳实践:如何制定更有效的基准测试?

周氏
• 阅读 2361

欢迎阅读MongoDB性能最佳实践的系列博文的基准测试篇。

 

在本系列中,我们从多个重要维度上讨论实现规模化性能的关键因素,包括:

● 数据建模与内存优化

● 查询模式和性能分析

● 索引

● 分片

● 事务和读/写关注

● 硬件和操作系统配置

● 基准测试(本期讨论的内容)

 

通用基准测试可能会存在误导,并不能代表所有技术以及该技术在特定应用中的性能。

我们建议你根据应用程序实际所使用的数据、查询和部署环境来制定基准测试。

以下注意事项将帮助制定更有效的基准测试。

 

 

使用多个并行线程

特别是对于分片集群和某些特定配置(如writeConcern
majority)来说,单个操作的延迟可能非常大,因此需要使用多个线程来保证吞吐量。

 

使用批量写入

同样,为了减少网络往返的开销,你可以使用批量写入一次加载(或更新)多个文档。

 

在数据加载之前创建Chunks

在创建新的分片集合时,在加载数据之前对chunks进行预分割。如果不进行预分割,数据可能会在加载到一个分片的过程中就被移动到其他分片。通过预分割数据,文档将并行加载到适相应当的分片中。如果你的基准测试不包括范围查询,那么可以使用基于哈希的分片来确保写入和读取的均匀分布。

 

考虑分片键的顺序

如果你配置了基于范围的分片,并且按分片键对数据进行排序,那么在给定时间内的所有插入操作必然都将进入同一个Chunk的同一个分片。那么添加多个分片就没有意义了,因为在给定时间内只有一个分片处于活跃状态。

 

你可以通过设计数据加载使得不同的分片键值并行插入到不同的分片中:如果你的数据按分片键顺序排序,那么可以使用基于哈希的分片,确保键值相近的并行插入将被路由到不同的分片。

 

批量加载时禁用平衡器

在批量加载期间,防止均衡器进行不必要的重新数据平衡,这样可以提高性能。

 

为系统进行预热数分钟

在用于生产环境的 MongoDB 系统中,工作集应放在内存中,所有读写操作都将在内存中执行。MongoDB必须首先把工作集读到内存中,因此在进行测试之前,先用有代表性的查询对系统进行几分钟的预热,从而更加准确地了解
MongoDB 在生产环境中的性能。

 

使用连接池

每次操作都重新建立连接需要额外的时间,尤其是在使用 TLS 的情况下。你可以参考官方文档中的连接池选项

配置 ulimits 同样很重要。

 

通过监控找到瓶颈

无论是运行基准测试还是生产工作负载,监控部署环境都非常重要。

阿里云MongoDB提供的监控功能可以对实例各节点资源的运行情况进行监控,你可以通过基本监控功能查看常用资源(例如CPU使用率和内存使用率)的运行情况。

同时,阿里云MongoDB 提供的告警功能也支持为实例的重要监控项设置阈值报警规则。当监控项的值不在设置的阈值范围内时,系统会自动向你发出报警通知,提醒您数据异常,帮助您快速定位问题并进行处理。

 

MongoDB性能最佳实践:如何制定更有效的基准测试?
图1:以查看某一时间点的监控信息为例
MongoDB性能最佳实践:如何制定更有效的基准测试?
图2:设置告警规则

 

性能诊断最佳实践

MongoDB实例内存使用率高问题

解决MongoDB实例的CPU使用率高的问题

如何解决MongoDB实例IOPS使用率高的问题

MongoDB实例空间使用率高问题

 

基准性能压测

如果你想进行MongoDB不同规格的基准性能压测,可以参考以下文档:

性能白皮书_云数据库MongoDB 版(MongoDB)-阿里云帮助中心

 

 

总结

感谢你与我们一起走过这段MongoDB性能最佳实践之旅,希望你能从中获取一些有用的信息。

 

阿里云提供了性能诊断与优化的帮助文档,你也可以加入我们的服务钉钉群(MongoDB开发者技术群1群: 26895026108 ,MongoDB开发者技术群2群:28325026378)获得更多专家指导。

 
4月16日,MongoDB联合阿里云带来MongoDB数据库迁移指导线上研讨会,欢迎大家报名参与!

 

 

 


👉点击访问 MongoDB中文官网
👉立即免费试用 MongoDB Atlas
☎️需要支持?欢迎联系我们:400-8662988
✅欢迎关注MongoDB微信订阅号(MongoDB-China),及时获取最新资讯。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
4年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
FLV文件格式
1.        FLV文件对齐方式FLV文件以大端对齐方式存放多字节整型。如存放数字无符号16位的数字300(0x012C),那么在FLV文件中存放的顺序是:|0x01|0x2C|。如果是无符号32位数字300(0x0000012C),那么在FLV文件中的存放顺序是:|0x00|0x00|0x00|0x01|0x2C。2.  
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
美凌格栋栋酱 美凌格栋栋酱
5个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(