(Python)零起步数学+神经网络入门

Wesley13
• 阅读 558

在这篇文章中,我们将在Python中从头开始了解用于构建具有各种层神经网络(完全连接,卷积等)的小型库中的机器学习和代码。最终,我们将能够写出如下内容:

(Python)零起步数学+神经网络入门

假设你对神经网络已经有一定的了解,这篇文章的目的不是解释为什么构建这些模型,而是要说明如何正确实现

逐层

我们这里需要牢记整个框架:

1.     将数据输入神经网络

2.     在得出输出之前,数据从一层流向下一层

3.     一旦得到输出,就可以计算出一个标量误差

4.     最后,可以通过相对于参数本身减去误差的导数来调整给定参数(权重或偏差)。

5.     遍历整个过程。

最重要的一步是第四步。 我们希望能够拥有任意数量的层,以及任何类型的层。 但是如果修改/添加/删除网络中的一个层,网络的输出将会改变,误差也将改变,误差相对于参数的导数也将改变。无论网络架构如何、激活函数如何、损失如何,都必须要能够计算导数。

为了实现这一点,我们必须分别实现每一层

每个层应该实现什么

我们可能构建的每一层(完全连接,卷积,最大化,丢失等)至少有两个共同点:输入输出数据。

(Python)零起步数学+神经网络入门

现在重要的一部分

假设给出一个层*相对于其输出(E/Y)误差的导数,那么它必须能够提供相对于其输入(E/X*)误差的导数

(Python)零起步数学+神经网络入门

 (Python)零起步数学+神经网络入门

我们可以使用链规则轻松计算∂E/∂X的元素:

(Python)零起步数学+神经网络入门

*为什么是E/X*

对于每一层,我们需要相对于其输入的误差导数,因为它将是相对于前一层输出的误差导数。这非常重要,这是理解反向传播的关键!在这之后,我们将能够立即从头开始编写深度卷积神经网络!

花样图解

基本上,对于前向传播,我们将输入数据提供给第一层,然后每层的输出成为下一层的输入,直到到达网络的末端。

(Python)零起步数学+神经网络入门

对于反向传播,我们只是简单使用链规则来获得需要的导数。这就是为什么每一层必须提供其输出相对于其输入的导数。

(Python)零起步数学+神经网络入门

这可能看起来很抽象,但是当我们将其应用于特定类型的层时,它将变得非常清楚。现在是编写第一个python类的好时机。

抽象基类:****Layer

所有其它层将继承的抽象类Layer会处理简单属性,这些属性是输入输出以及前向反向方法。

from abc import abstractmethod
# Base class
class Layer:
    def __init__(self):
        self.input = None;
        self.output = None;
        self.input_shape = None;
        self.output_shape = None;
    # computes the output Y of a layer for a given input X
    @abstractmethod
    def forward_propagation(self, input):
        raise NotImplementedError

    # computes dE/dX for a given dE/dY (and update parameters if any)
    @abstractmethod
    def backward_propagation(self, output_error, learning_rate):
        raise NotImplementedError

正如你所看到的,在back_propagation函数中,有一个我没有提到的参数,它是learning_rate。 此参数应该类似于更新策略或者在Keras中调用它的优化器,为了简单起见,我们只是通过学习率并使用梯度下降更新我们的参数。

全连接层

现在先定义并实现第一种类型的网络层:全连接层或FC层。FC层是最基本的网络层,因为每个输入神经元都连接到每个输出神经元。

(Python)零起步数学+神经网络入门

前向传播

每个输出神经元的值由下式计算:

(Python)零起步数学+神经网络入门

使用矩阵,可以使用点积来计算每一个输出神经元的值:

(Python)零起步数学+神经网络入门

当完成前向传播之后,现在开始做反向传播。

反向传播

正如我们所说,假设我们有一个矩阵,其中包含与该层输出相关的误差导数(∂E/∂Y)。 我们需要 :

1.关于参数的误差导数(∂E/∂W,∂E/∂B)

2.关于输入的误差导数(∂E/∂X)

首先计算∂E/∂W,该矩阵应与W本身的大小相同:对于ixj,其中i是输入神经元的数量,j是输出神经元的数量。每个权重都需要一个梯度

(Python)零起步数学+神经网络入门

使用前面提到的链规则,可以写出:

(Python)零起步数学+神经网络入门

那么:

(Python)零起步数学+神经网络入门

这就是更新权重的第一个公式!现在开始计算∂E/∂B:

(Python)零起步数学+神经网络入门

同样,∂E/∂B需要与B本身具有相同的大小,每个偏差一个梯度。 我们可以再次使用链规则:

(Python)零起步数学+神经网络入门

得出结论:

(Python)零起步数学+神经网络入门

现在已经得到E/WE/B,我们留下∂***E/X**这是*非常重要的,因为它将“作用”为之前层的∂E/∂Y。

(Python)零起步数学+神经网络入门

再次使用链规则:

(Python)零起步数学+神经网络入门

最后,我们可以写出整个矩阵:

(Python)零起步数学+神经网络入门

(Python)零起步数学+神经网络入门

编码全连接层

现在我们可以用Python编写实现:

from layer import Layer
import numpy as np

# inherit from base class Layer
class FCLayer(Layer):
    # input_shape = (1,i)   i the number of input neurons
    # output_shape = (1,j)  j the number of output neurons
    def __init__(self, input_shape, output_shape):
        self.input_shape = input_shape;
        self.output_shape = output_shape;
        self.weights = np.random.rand(input_shape[1], output_shape[1]) - 0.5;
        self.bias = np.random.rand(1, output_shape[1]) - 0.5;

    # returns output for a given input
    def forward_propagation(self, input):
        self.input = input;
        self.output = np.dot(self.input, self.weights) + self.bias;
        return self.output;

    # computes dE/dW, dE/dB for a given output_error=dE/dY. Returns input_error=dE/dX.
    def backward_propagation(self, output_error, learning_rate):
        input_error = np.dot(output_error, self.weights.T);
        dWeights = np.dot(self.input.T, output_error);
        # dBias = output_error
        
        # update parameters
        self.weights -= learning_rate * dWeights;
        self.bias -= learning_rate * output_error;
        return input_error;

激活层

到目前为止所做的计算都完全是线性的。用这种模型学习是没有希望的,需要通过将非线性函数应用于某些层的输出来为模型添加非线性。

现在我们需要为这种新类型的层(激活层)重做整个过程!

不用担心,因为此时没有可学习的参数,过程会快点,只需要计算∂E/∂X。

我们将f和f'分别称为激活函数及其导数。

(Python)零起步数学+神经网络入门

前向传播

正如将看到的,它非常简单。对于给定的输入X,输出是关于每个X元素的激活函数,这意味着输入输出具有相同的大小

(Python)零起步数学+神经网络入门

反向传播

给出∂E/∂Y,需要计算∂E/∂X

(Python)零起步数学+神经网络入门

注意,这里我们使用两个矩阵之间的每个元素乘法(而在上面的公式中,它是一个点积)

编码实现激活层

激活层的代码非常简单:

from layer import Layer
# inherit from base class Layer
class ActivationLayer(Layer):
    # input_shape = (1,i)   i the number of input neurons
    def __init__(self, input_shape, activation, activation_prime):
        self.input_shape = input_shape;
        self.output_shape = input_shape;
        self.activation = activation;
        self.activation_prime = activation_prime;

    # returns the activated input
    def forward_propagation(self, input):
        self.input = input;
        self.output = self.activation(self.input);
        return self.output;

    # Returns input_error=dE/dX for a given output_error=dE/dY.
    # learning_rate is not used because there is no "learnable" parameters.
    def backward_propagation(self, output_error, learning_rate):
        return self.activation_prime(self.input) * output_error;

可以在单独的文件中编写一些激活函数以及它们的导数,稍后将使用它们构建ActivationLayer:

import numpy as np
# activation function and its derivative
def tanh(x):
    return np.tanh(x);

def tanh_prime(x):
    return 1-np.tanh(x)**2;

损失函数

到目前为止,对于给定的层,我们假设给出了∂E/∂Y(由下一层给出)。但是最后一层怎么得到∂E/∂Y?我们通过简单地手动给出最后一层的∂E/∂Y,它取决于我们如何定义误差。

网络的误差由自己定义,该误差衡量网络对给定输入数据的好坏程度。有许多方法可以定义误差,其中一种最常见的叫做MSE - Mean Squared Error:

(Python)零起步数学+神经网络入门

其中y *和y分别表示期望的输出实际输出。你可以将损失视为最后一层,它将所有输出神经元吸收并将它们压成一个神经元。与其他每一层一样,需要定义∂E/∂Y。除了现在,我们终于得到E!

(Python)零起步数学+神经网络入门

以下是两个python函数,可以将它们放在一个单独的文件中,将在构建网络时使用。

import numpy as np

# loss function and its derivative
def mse(y_true, y_pred):
    return np.mean(np.power(y_true-y_pred, 2));

def mse_prime(y_true, y_pred):
    return 2*(y_pred-y_true)/y_true.size;

网络类

到现在几乎完成了!我们将构建一个Network类来创建神经网络,非常容易,类似于第一张图片!

我注释了代码的每一部分,如果你掌握了前面的步骤,那么理解它应该不会太复杂。

from layer import Layer

class Network:
    def __init__(self):
        self.layers = [];
        self.loss = None;
        self.loss_prime = None;

    # add layer to network
    def add(self, layer):
        self.layers.append(layer);

    # set loss to use
    def use(self, loss, loss_prime):
        self.loss = loss;
        self.loss_prime = loss_prime;

    # predict output for given input
    def predict(self, input):
        # sample dimension first
        samples = len(input);
        result = [];

        # run network over all samples
        for i in range(samples):
            # forward propagation
            output = input[i];
            for layer in self.layers:
                # output of layer l is input of layer l+1
                output = layer.forward_propagation(output);
            result.append(output);

        return result;

    # train the network
    def fit(self, x_train, y_train, epochs, learning_rate):
        # sample dimension first
        samples = len(x_train);

        # training loop
        for i in range(epochs):
            err = 0;
            for j in range(samples):
                # forward propagation
                output = x_train[j];
                for layer in self.layers:
                    output = layer.forward_propagation(output);

                # compute loss (for display purpose only)
                err += self.loss(y_train[j], output);

                # backward propagation
                error = self.loss_prime(y_train[j], output);
                # loop from end of network to beginning
                for layer in reversed(self.layers):
                    # backpropagate dE
                    error = layer.backward_propagation(error, learning_rate);

            # calculate average error on all samples
            err /= samples;
            print('epoch %d/%d   error=%f' % (i+1,epochs,err));

构建一个神经网络

最后!我们可以使用我们的类来创建一个包含任意数量层的神经网络!为了简单起见,我将向你展示如何构建......一个XOR。

from network import Network
from fc_layer import FCLayer
from activation_layer import ActivationLayer
from losses import *
from activations import *
import numpy as np

# training data
x_train = np.array([[[0,0]], [[0,1]], [[1,0]], [[1,1]]]);
y_train = np.array([[[0]], [[1]], [[1]], [[0]]]);

# network
net = Network();
net.add(FCLayer((1,2), (1,3)));
net.add(ActivationLayer((1,3), tanh, tanh_prime));
net.add(FCLayer((1,3), (1,1)));
net.add(ActivationLayer((1,1), tanh, tanh_prime));

# train
net.use(mse, mse_prime);
net.fit(x_train, y_train, epochs=1000, learning_rate=0.1);

# test
out = net.predict(x_train);
print(out);

同样,我认为不需要强调很多事情,只需要仔细训练数据,应该能够先获得样本维度。例如,对于xor问题,样式应为(4,1,2)。

结果

$ python xor.py epoch 1/1000 error=0.322980 epoch 2/1000 error=0.311174 epoch 3/1000 error=0.307195 ... epoch 998/1000 error=0.000243 epoch 999/1000 error=0.000242 epoch 1000/1000 error=0.000242 [array([[ 0.00077435]]), array([[ 0.97760742]]), array([[ 0.97847793]]), array([[-0.00131305]])]

卷积层

这篇文章开始很长,所以我不会描述实现卷积层的所有步骤。但是,这是我做的一个实现:

from layer import Layer
from scipy import signal
import numpy as np

# inherit from base class Layer
# This convolutional layer is always with stride 1
class ConvLayer(Layer):
    # input_shape = (i,j,d)
    # kernel_shape = (m,n)
    # layer_depth = output depth
    def __init__(self, input_shape, kernel_shape, layer_depth):
        self.input_shape = input_shape;
        self.input_depth = input_shape[2];
        self.kernel_shape = kernel_shape;
        self.layer_depth = layer_depth;
        self.output_shape = (input_shape[0]-kernel_shape[0]+1, input_shape[1]-kernel_shape[1]+1, layer_depth);
        self.weights = np.random.rand(kernel_shape[0], kernel_shape[1], self.input_depth, layer_depth) - 0.5;
        self.bias = np.random.rand(layer_depth) - 0.5;

    # returns output for a given input
    def forward_propagation(self, input):
        self.input = input;
        self.output = np.zeros(self.output_shape);

        for k in range(self.layer_depth):
            for d in range(self.input_depth):
                self.output[:,:,k] += signal.correlate2d(self.input[:,:,d], self.weights[:,:,d,k], 'valid') + self.bias[k];

        return self.output;

    # computes dE/dW, dE/dB for a given output_error=dE/dY. Returns input_error=dE/dX.
    def backward_propagation(self, output_error, learning_rate):
        in_error = np.zeros(self.input_shape);
        dWeights = np.zeros((self.kernel_shape[0], self.kernel_shape[1], self.input_depth, self.layer_depth));
        dBias = np.zeros(self.layer_depth);

        for k in range(self.layer_depth):
            for d in range(self.input_depth):
                in_error[:,:,d] += signal.convolve2d(output_error[:,:,k], self.weights[:,:,d,k], 'full');
                dWeights[:,:,d,k] = signal.correlate2d(self.input[:,:,d], output_error[:,:,k], 'valid');
            dBias[k] = self.layer_depth * np.sum(output_error[:,:,k]);

        self.weights -= learning_rate*dWeights;
        self.bias -= learning_rate*dBias;
        return in_error;

它背后的数学实际上并不复杂!这是一篇很好的文章,你可以找到∂E/∂W,∂E/∂B和∂E/∂X的解释和计算。

如果你想验证你的理解是否正确,请尝试自己实现一些网络层,如MaxPooling,Flatten或Dropout

GitHub库

你可以在GitHub库中找到用于该文章的完整代码。

原文链接

点赞
收藏
评论区
推荐文章
blmius blmius
2年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Jacquelyn38 Jacquelyn38
2年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Stella981 Stella981
2年前
Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句python3authorlizmdatetime2018020110:00:00coding:utf8'''
Stella981 Stella981
2年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
2年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
2年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
2年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
2年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
3个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这