数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

柯里露台
• 阅读 13359

作者:xiaoyu
微信公众号:Python数据科学
知乎:python数据分析师


Seaborn学习大纲

seaborn的学习内容主要包含以下几个部分:

  1. 风格管理

    • 绘图风格设置
    • 颜色风格设置
  2. 绘图方法

    • 数据集的分布可视化
    • 分类数据可视化
    • 线性关系可视化
  3. 结构网格

    • 数据识别网格绘图

本次将主要介绍数据集的分布可视化的使用。

数据集分布可视化

当处理一个数据集的时候,我们经常会想要先看看特征变量是如何分布的。这会让我们对数据特征有个很好的初始认识,同时也会影响后续数据分析以及特征工程的方法。本篇将会介绍如何使用 seaborn 的一些工具来检测单变量和双变量分布情况。

首先还是先导入需要的模块和数据集。

%matplotlib inline
import numpy as np
import pandas as pd
from scipy import stats, integrate
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
np.random.seed(sum(map(ord, "distributions")))
注意:这里的数据集是随机产生的分布数据,由 numpy 生成,数据类型是ndarray。当然,pandas 的 Series 数据类型也是可以使用的,比如我们经常需要从 DataFrame 表中提取某一特征(某一列)来查看分布情况。

绘制单变量分布

在 seaborn 中,快速观察单变量分布的最方便的方法就是使用 distplot() 函数。默认会使用柱状图(histogram)来绘制,并提供一个适配的核密度估计(KDE)。

x = np.random.normal(size=100)
sns.distplot(x);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

直方图(histograms

直方图是比较常见的,并且在 matplotlib 中已经存在了 hist 函数。直方图在横坐标的数据值范围内均等分的形成一定数量的数据段(bins),并在每个数据段内用矩形条(bars)显示y轴观察数量的方式,完成了对的数据分布的可视化展示。

为了说明这个,我们可以移除 kde plot,然后添加 rug plot(在每个观察点上的垂直小标签)。当然,你也可以使用 rug plot 自带的 rugplot() 函数,但是也同样可以在 distplot 中实现:

sns.distplot(x, kde=False, rug=True);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

当绘制直方图时,你最需要确定的参数是矩形条的数目以及如何放置它们。distplot()使用了一个简单的规则推测出默认情况下最合适的数量,但是或多或少的对 bins 数量进行一些尝试也许能找出数据的其它特征:

sns.distplot(x, bins=20, kde=False, rug=True);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

核密度估计(Kernel density estimation)

核密度估计可能不被大家所熟悉,但它对于绘制分布的形状是一个非常有用的工具。就像直方图那样,KDE plots 会在一个轴上通过高度沿着其它轴将观察的密度编码。

sns.distplot(x, hist=False, rug=True);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

绘制 KDE 比绘制直方图需要更多的计算。它的计算过程是这样的,每个观察点首先都被以这个点为中心的正态分布曲线所替代。

x = np.random.normal(0, 1, size=30)
bandwidth = 1.06 * x.std() * x.size ** (-1 / 5.)
support = np.linspace(-4, 4, 200)

kernels = []
for x_i in x:

    kernel = stats.norm(x_i, bandwidth).pdf(support)
    kernels.append(kernel)
    plt.plot(support, kernel, color="r")

sns.rugplot(x, color=".2", linewidth=3);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

然后,这些替代的曲线进行加和,并计算出在每个点的密度值。最终生成的曲线被归一化,以使得曲线下面包围的面积是1。

density = np.sum(kernels, axis=0)
density /= integrate.trapz(density, support)
plt.plot(support, density);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

我们可以看到,如果我们使用 kdeplot() 函数,我们可以得到相同的曲线。这个函数实际上也被 distplot() 所使用,但是如果你就只想要密度估计,那么 kdeplot() 会提供一个直接的接口更简单的操作其它选项。

sns.kdeplot(x, shade=True);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

KDE 的带宽参数(bw)控制着密度估计曲线的宽窄形状,有点类似直方图中的 bins 参数的作用。它对应着我们上面绘制的 KDE 的宽度。默认情况下,函数会按照一个通用的参考规则来估算出一个合适的值,但是尝试更大或者更小也可能会有帮助:

sns.kdeplot(x)
sns.kdeplot(x, bw=.2, label="bw: 0.2")
sns.kdeplot(x, bw=2, label="bw: 2")
plt.legend();

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

如上所述,高斯KDE过程的意味着估计延续了数据集中最大和最小的值。 可以通过cut参数来控制绘制曲线的极值值的距离; 然而,这只影响曲线的绘制方式,而不是曲线如何拟合:

sns.kdeplot(x, shade=True, cut=0)
sns.rugplot(x);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

拟合参数分布

你也可以使用distplot()将参数分布拟合到数据集,并可视化地评估其与观察数据的对应程度:

x = np.random.gamma(6, size=200)
sns.distplot(x, kde=False, fit=stats.gamma);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

绘制双变量分布

对于双变量分布的可视化也是非常有用的。在 seaborn 中最简单的方法就是使用 joinplot() 函数,它能够创建一个多面板图形来展示两个变量之间的联合关系,以及每个轴上单变量的分布情况。

mean, cov = [0, 1], [(1, .5), (.5, 1)]
data = np.random.multivariate_normal(mean, cov, 200)
df = pd.DataFrame(data, columns=["x", "y"])

Scatterplots

双变量分布最熟悉的可视化方法无疑是散点图了,在散点图中每个观察结果以x轴和y轴值所对应的点展示。你可以用 matplotlib 的 plt.scatter 函数来绘制一个散点图,它也是jointplot()函数显示的默认方式。

sns.jointplot(x="x", y="y", data=df)

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

Hexbin plots

直方图 histogram 的双变量类似图被称为 “hexbin” 图,因为它展示了落在六角形箱内的观测量。这种绘图对于相对大的数据集效果最好。它可以通过 matplotlib 的 plt.hexbin 函数使用,也可以作为 jointplot 的一种类型参数使用。它使用白色背景的时候视觉效果最好。

x, y = np.random.multivariate_normal(mean, cov, 1000).T
with sns.axes_style("white"):
    sns.jointplot(x=x, y=y, kind="hex", color="k");

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

Kernel density estimation

还使用上面描述的核密度估计过程来可视化双变量分布。在 seaborn 中,这种绘图以等高线图展示,并且可以作为 jointplot()的一种类型参数使用。

sns.jointplot(x="x", y="y", data=df, kind="kde");

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

你也可以用 kdeplot 函数来绘制一个二维的核密度图形。这可以将这种绘图绘制到一个特定的(可能已经存在的)matplotlib轴上,而jointplot()函数只能管理自己:

f, ax = plt.subplots(figsize=(6, 6))
sns.kdeplot(df.x, df.y, ax=ax)
sns.rugplot(df.x, color="g", ax=ax)
sns.rugplot(df.y, vertical=True, ax=ax);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

如果你希望让双变量密度看起来更连续,您可以简单地增加 n_levels 参数增加轮廓级数:

f, ax = plt.subplots(figsize=(6, 6))
cmap = sns.cubehelix_palette(as_cmap=True, dark=0, light=1, reverse=True)
sns.kdeplot(df.x, df.y, cmap=cmap, n_levels=60, shade=True);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

jointplot()函数使用JointGrid来管理图形。为了获得更多的灵活性,您可能需要直接使用JointGrid绘制图形。jointplot()在绘制后返回JointGrid对象,你可以用它来添加更多层或调整可视化的其他方面:

g = sns.jointplot(x="x", y="y", data=df, kind="kde", color="m")
g.plot_joint(plt.scatter, c="w", s=30, linewidth=1, marker="+")
g.ax_joint.collections[0].set_alpha(0)
g.set_axis_labels("$X$", "$Y$");

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

可视化数据集成对关系

为了绘制数据集中多个成对的双变量,你可以使用 pairplot() 函数。这创建了一个轴矩阵,并展示了在一个 DataFrame 中每对列的关系。默认情况下,它也绘制每个变量在对角轴上的单变量。

iris = sns.load_dataset("iris")
sns.pairplot(iris);

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

就像 joinplot()JoinGrid 之间的关系,pairplot() 函数建立在 PairGrid 对象之上,直接使用可以更灵活。

g = sns.PairGrid(iris)
g.map_diag(sns.kdeplot)
g.map_offdiag(sns.kdeplot, cmap="Blues_d", n_levels=6);
/Users/mwaskom/anaconda/lib/python2.7/site-packages/matplotlib/axes/_axes.py:545: UserWarning: No labelled objects found. Use label='...' kwarg on individual plots.
  warnings.warn("No labelled objects found. "

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

参考:http://seaborn.pydata.org/tut...

关注微信公众号Python数据科学,获取 120G 人工智能 学习资料。
数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

数据可视化Seaborn从零开始学习教程(三) 数据分布可视化篇

点赞
收藏
评论区
推荐文章
blmius blmius
4年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
美凌格栋栋酱 美凌格栋栋酱
7个月前
Oracle 分组与拼接字符串同时使用
SELECTT.,ROWNUMIDFROM(SELECTT.EMPLID,T.NAME,T.BU,T.REALDEPART,T.FORMATDATE,SUM(T.S0)S0,MAX(UPDATETIME)CREATETIME,LISTAGG(TOCHAR(
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
4年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Aidan075 Aidan075
4年前
如何用python进行数据分析——00环境配置
↑一个宝藏公众号,长的好看的人都关注了 简单介绍一下Python吧Python是一种面向对象程序设计语言,由荷兰人吉多·范罗苏姆于1989年底发明。目前是最常用也是最热门的一门编程语言之一,应用非常广泛。(不是这个面对对象)为什么选择python呢?有人说python是万能的,除了生孩子不会,什么都会。有人说python是未来
Aidan075 Aidan075
4年前
如何用python进行数据分析——00环境配置
↑一个宝藏公众号,长的好看的人都关注了 简单介绍一下Python吧Python是一种面向对象程序设计语言,由荷兰人吉多·范罗苏姆于19
Aidan075 Aidan075
4年前
1年前的小五都用 Python 来做什么?
↑点击上方“凹凸数据” 关注星标 每天更新,干货不断  (多图预警)注:这是小五一年前在知乎的回答,当时还只有凹凸数读一个公众号,所以很多图片都会带有数读或者知乎的水印。作为一个菜鸟数据分析师,只会sqlpython业余时间写写文章:用python爬取数据→数据清洗→数据分析→数据可视化词云镇楼20190730回来看,前面
Stella981 Stella981
3年前
Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句python3authorlizmdatetime2018020110:00:00coding:utf8'''
Wesley13 Wesley13
3年前
4cast
4castpackageloadcsv.KumarAwanish发布:2020122117:43:04.501348作者:KumarAwanish作者邮箱:awanish00@gmail.com首页:
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这