深度学习基础 (包括前馈神经网络反向传播和卷积网络反向传播)
聊一聊深度学习(三天肝完深度学习基础,球球让我过吧!!)最近有场考试!!所以来过一遍深度学习,记录一些笔记备考看老师的ppt与花书,双管齐下应对深度学习(保佑我不挂吧!!)废话结束!引言人工智能领域的流派1.符号主义:逻辑主义,心理学派(推理期,心理期)2.连接主义:仿生学派或生理学派(殊途同归,各有所长)机器学
Jacquelyn38 Jacquelyn38
4年前
手把手教你实现一个Vue无限级联树形表格(增删改)
前言平时我们可能在做项目时,会遇到一个业务逻辑。实现一个无限级联树形表格,什么叫做无限级联树形表格呢?就是下图所展示的内容,有一个祖元素,然后下面可能有很多子孙元素,你可以实现添加、编辑、删除这样几个功能。资源JavaScript框架:vue.jsUI框架:ElementUI源码这里需要重点说明的是,主要使用了递归的算法以及给数
Stella981 Stella981
3年前
Python图像读写方法对比
  训练视觉相关的神经网络模型时,总是要用到图像的读写。方法有很多,比如matplotlib、cv2、PIL等。下面比较几种读写方式,旨在选出一个最快的方式,提升训练速度。实验标准  因为训练使用的框架是Pytorch,因此读取的实验标准如下:  1、读取分辨率都为1920x1080的5张图片(png格式一张,jpg格式四张)并保存到数
Stella981 Stella981
3年前
Google研究人员推出了一种用于生成文本到图像的新框架(TReCS)
!(https://oscimg.oschina.net/oscnet/faedcb264a1c43969f2f5a2e6b9dbd2e.png)基于生成对抗网络(GAN)的深度神经网络促进了端到端可训练的照片级逼真的文本到图像的生成。许多方法还使用中间场景图表示法来改善图像合成。使用基于对话的交互的方法允许用户提供指令,以逐步改进和调整生成
马尚 马尚
1年前
探究验证码识别技术与实践方法
验证码识别技术在网络爬虫和自动化测试等领域有着广泛的应用,但是验证码的复杂性和多样性也给识别带来了挑战。本文将深入探讨验证码识别的技术原理和实践方法,为读者提供全面的认识和应用指南。1.深度学习方法:深度学习在验证码识别领域有着广泛的应用,通过神经网络模型
贾蔷 贾蔷
2星期前
力扣1137题 解题思路和步骤 C++代码实现,力扣一共多少题
一、题目分析力扣1137题要求我们找到第N个泰波那契数。泰波那契数的定义是:T00,T11,T21,且在n0的条件下Tn3TnTn1Tn2。,当n4时,T4T3T2T14。这道题主要考查我们对递归或动态规划的理解和运用。在思考解题方法时,我们
使用深度学习进行图像分类
解决任何真实问题的重要一步是获取数据。Kaggle提供了大量不同数据科学问题的竞赛。我们将挑选一个2014年提出的问题,然后使用这个问题测试本章的深度学习算法,并在第5章中进行改进,我们将基于卷积神经网络(CNN)和一些可以使用的高级技术来改善图像识别模型的性能。大家可以从https://www.kaggle.com/c/dogsvscats/data下载数
时间复杂度为 O(nlogn) 的排序算法 | 京东物流技术团队
归并排序归并排序遵循分治的思想:将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后合并这些子问题的解来建立原问题的解,归并排序的步骤如下:划分:分解待排序的n个元素的序列成各具n/2个元素的两个子序列,将长数组的排序问题转换为短数
胡赤儿 胡赤儿
1年前
从原理到应用探索深度学习的技术
随着大数据和计算能力的飞速发展,深度学习作为人工智能领域的一个重要分支,已经引起了广泛的关注和研究。深度学习通过模拟人脑神经网络的运作方式,使得机器能够学习并理解数据的内在规律和特征,从而实现更高级别的智能化。本文将深入探讨深度学习的基本原理、关键技术及其