推荐
专栏
教程
课程
飞鹅
本次共找到221条
递归神经网络
相关的信息
helloworld_78018081
•
3年前
java常见笔试编程题,深夜思考
一面(一个半小时)1.首先自我介绍2.了解Web层开发?数据库索引了解么?聚簇索引,非聚簇索引?索引分类?3.了解数据库都由哪些引擎?分别有什么区别和使用场景?4.了解分布式?高可用?如何保证节点集群的同步?Nginx了解过么?5.什么是事务,数据库的隔离级别,Mysql默认的隔离级别。6.JVM的内存模型,GC算法7.非递归实现
Wesley13
•
3年前
java中的锁
记录一下公平锁,非公平锁,可重入锁(递归锁),读写锁,自旋锁的概念,以及一些和锁有关的java类。公平锁与非公平锁:公平锁就是在多线程环境下,每个线程在获取锁时,先查看这个锁维护的队列,如果队列为空或者自身就是等待队列的第一个,就占有锁。否则就加入到等待队列中,按照FIFO的顺序依次占有锁。非公平锁会一上来就试图占
Wesley13
•
3年前
java经典50题
JAVA基础编程练习50题本文对50道经典的java程序题进行详细解说,对于初学者可以跳过一些逻辑性太强的题目,比如第一题用到了方法的递归,初学者可能不理解,最好先看那些有if、for、while可以简单解决的程序题!但是,对于比较深入学习过的同学,还是希望可以一口气就看完,这是比较全面思维锻炼!【程序1】题目:古典问题:有一对兔子,从
Easter79
•
3年前
TensorFlow为新旧Mac特供新版本,GPU可用于训练,速度最高提升7倍
苹果「一呼百应」的号召力在机器学习领域似乎也不例外。新版Mac推出还不到两周,谷歌就把专为Mac优化的TensorFlow版本做好了,训练速度最高提升到原来的7倍。机器之心报道,机器之心编辑部。对于开发者、工程师、科研工作者来说,Mac一直是非常受欢迎的平台,也有人用Mac训练神经网络,但训练速度一直是一个令人头疼的问题。
Wesley13
•
3年前
MXNET:丢弃法
除了前面介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题。方法与原理为了确保测试模型的确定性,丢弃法的使用只发生在训练模型时,并非测试模型时。当神经网络中的某一层使用丢弃法时,该层的神经元将有一定概率被丢弃掉。设丢弃概率为$p$。具体来说,该层任一神经元在应用激活函数后,有$p$的概率自乘0,有
Wesley13
•
3年前
AI领域最最最稀缺的人才——AI架构师
分布式技术是深度学习技术的加速器。同时利用多个工作节点,分布式地、高效地训练出性能优良的神经网络模型,能够显著提高深度学习的训练效率、进一步增大其应用范围。《首席AI架构师——分布式高性能深度学习实战培养计划》,力图从更宽的视角,梳理清楚深度学习框架、AI应用、部署上线的整个环节,让你在AI职业规划上可以多一些选择。!(https
Wesley13
•
3年前
CNN中常用的四种卷积详解
卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。这期我们一起学习下深度学习中常见的卷积有哪些?1\.一般卷积卷积在数学上用通俗的话来说就是输入矩阵与卷积核(卷积核也是矩阵)进行对应元素相乘并求和,所以一次卷积的结果的输出是一个数,最后对整个输入输入矩阵进行遍历,
Stella981
•
3年前
Leetcode 572 另一个树的子树 : 递归转换为判断树是否相同
!(https://imgblog.csdnimg.cn/20200922212416167.png?xossprocessimage/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3d3eHkxOTk1,size_16,color_F
Easter79
•
3年前
TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围:tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元。也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算。但是它的权重得保留
helloworld_91538976
•
2年前
迁移学习(Transfer Learning)
1.深入了解神经网络的组成、训练和实现,掌握深度空间特征分布等关键概念;2.掌握迁移学习的思想与基本形式,了解传统迁移学习的基本方法,对比各种方法的优缺点;3.握深度迁移学习的思想与组成模块,学习深度迁移学习的各种方法;4.掌握深度迁移学习的网络结构设计、目标函数设计的前沿方法,了解迁移学习在PDA、SourceFreeDA上的应用;5.掌握深度迁移学习在
1
•••
20
21
22
23